cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228317 The hyper-Wiener index of the triangular graph T(n) (n >= 1).

Original entry on oeis.org

0, 0, 3, 21, 75, 195, 420, 798, 1386, 2250, 3465, 5115, 7293, 10101, 13650, 18060, 23460, 29988, 37791, 47025, 57855, 70455, 85008, 101706, 120750, 142350, 166725, 194103, 224721, 258825, 296670, 338520, 384648, 435336, 490875, 551565, 617715, 689643
Offset: 1

Views

Author

Emeric Deutsch, Aug 26 2013

Keywords

Comments

The triangular graph T(n) is the graph whose vertices represent the 2-subsets of {1,2,...,n} and two vertices are adjacent provided the corresponding 2-subsets have a nonempty intersection.
The triangular graph T(n) is a strongly regular graph with parameters n*(n-1)/2, 2*(n-2), n-2, and 4 (see the Brualdi and Ryser reference, Theorem 5.2.4).

References

  • R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

Programs

  • Maple
    a := proc (n) options operator, arrow: (1/8)*n*(n-1)*(n-2)*(3*n-5) end proc: seq(a(n), n = 1 .. 38);
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,0,3,21,75},40] (* Harvey P. Dale, Feb 23 2023 *)

Formula

a(n) = n*(n - 1)*(n - 2)*(3*n - 5)/8.
G.f.: 3*x^3*(1 + 2*x)/(1 - x)^5.
The Hosoya-Wiener polynomial of T(n) is (1/8)*n*(n - 1)*(4 + 4*(n-2)*t + (n - 2)*(n - 3)*t^2).
a(n) = 3*A001296(n-2) for n >= 2. - R. J. Mathar, Mar 05 2017