cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228329 a(n) = Sum_{k=0..n} (k+1)^2*T(n,k)^2 where T(n,k) is the Catalan triangle A039598.

Original entry on oeis.org

1, 8, 98, 1320, 18590, 268736, 3952228, 58837680, 883941750, 13373883600, 203487733020, 3110407163760, 47726453450988, 734694122886080, 11341161925265480, 175489379096245984, 2721169178975361702, 42273090191785999728, 657788911222324942060, 10250564041646388681200
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2013

Keywords

Comments

Let h(m) denote the sequence whose n-th term is Sum_{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(2).

Crossrefs

Cf. A039598, A000108, A024492 (h(0)), A000894 (h(1)), A000515 (h(3)), A228330 (h(4)), A228331 (h(5)), A228332 (h(6)), A228333 (h(7)).

Programs

  • Maple
    B:=(n,k)->binomial(2*n, n-k) - binomial(2*n, n-k-2); #A039598
    Omega:=(m,n)->add((k+1)^m*B(n,k)^2,k=0..n);
    h:=m->[seq(Omega(m,n),n=0..20)];
    h(2);
    # Second solution:
    h := n -> I*HeunG(8/5,0,-1/4,1/4,3/2,1/2,16*x)/sqrt(16*x-1);
    seq(coeff(series(h(x),x,n+2),x,n),n=0..19); # Peter Luschny, Nov 26 2013
  • Mathematica
    a[n_] := Binomial[4n, 2n] (3n+1)/(2n+1);
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 30 2018, after Philippe Deléham *)
  • Sage
    @CachedFunction
    def A228329(n):
        return A228329(n-1)*(6*n+2)*(4*n-3)*(4*n-1)/(n*(2*n+1)*(3*n-2)) if n>0 else 1
    [A228329(n) for n in (0..19)]  # Peter Luschny, Nov 26 2013

Formula

Conjecture: n*(2*n+1)*a(n) + 2*(-26*n^2+25*n-11)*a(n-1) + 20*(4*n-5)*(4*n-7)*a(n-2) = 0. - R. J. Mathar, Sep 08 2013
a(n) = ((4n)!*(3n+1))/((2n)!^2*(2n+1)) = binomial(4n,2n)*(3n+1)/(2n+1). - Philippe Deléham, Nov 25 2013
Therefore a(n) = A051960(2*n) / 2. - F. Chapoton, Jun 14 2024
From Peter Luschny, Nov 26 2013: (Start)
a(n) = 16^n*(3*n+1)*gamma(2*n+1/2)/(sqrt(Pi)*gamma(2*n+2)).
a(n) = a(n-1)*(6*n+2)*(4*n-3)*(4*n-1)/(n*(2*n+1)*(3*n-2)) if n > 0 else 1.
a(n) = [x^n] I*HeunG(8/5,0,-1/4,1/4,3/2,1/2,16*x)/sqrt(16*x-1) where [x^n] f(x) is the coefficient of x^n in f(x) and HeunG is the Heun general function. (End)