A228338 Third diagonal of Catalan difference table (A059346).
5, 9, 19, 43, 102, 250, 628, 1608, 4181, 11009, 29295, 78655, 212815, 579675, 1588245, 4374285, 12103407, 33628827, 93786969, 262450881, 736710360, 2073834420, 5853011850, 16558618510, 46949351275, 133390812255, 379708642289, 1082797114049, 3092894319078, 8848275403642
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
Programs
-
Maple
a := n -> 5*(-1)^n*hypergeom([7/2, -n], [5], 4): seq(simplify(a(n)), n=0..29); # Peter Luschny, May 25 2021
-
Mathematica
CoefficientList[Series[-(x+1)^(5/2)*Sqrt[1-3*x]/(2*x^4)-1/2*(- 1 - x + 3*x^2 + 7*x^3)/x^4, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 14 2014 *)
-
PARI
x='x+O('x^50); Vec(-(x+1)^(5/2)*sqrt(1-3*x)/(2*x^4)-1/2*(-1-x+3*x^2+7*x^3)/x^4) \\ G. C. Greubel, May 31 2017
Formula
From Vaclav Kotesovec, Feb 14 2014: (Start)
Recurrence: (n+4)*a(n) = (2*n+7)*a(n-1) + 3*(n-1)*a(n-2).
G.f.: -(x+1)^(5/2)*sqrt(1-3*x)/(2*x^4)-1/2*(-1-x+3*x^2+7*x^3)/x^4.
a(n) ~ 8 * 3^(n+3/2) / (sqrt(Pi) * n^(3/2)). (End)
a(n) = 5*(-1)^n*hypergeom([7/2, -n], [5], 4). - Peter Luschny, May 25 2021
Extensions
Terms a(21) onward added by G. C. Greubel, May 31 2017