A228348 Triangle of regions and compositions of the positive integers (see Comments lines for definition).
1, 2, 1, 1, 0, 0, 3, 2, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
---------------------------------------------------------- . Diagram Triangle Compositions of of compositions (rows) of 5 regions and regions (columns) ---------------------------------------------------------- . _ _ _ _ _ 5 |_ | 5 1+4 |_|_ | 1 4 2+3 |_ | | 2 0 3 1+1+3 |_|_|_ | 1 1 0 3 3+2 |_ | | 3 0 0 0 2 1+2+2 |_|_ | | 1 2 0 0 0 2 2+1+2 |_ | | | 2 0 1 0 0 0 2 1+1+1+2 |_|_|_|_ | 1 1 0 1 0 0 0 2 4+1 |_ | | 4 0 0 0 0 0 0 0 1 1+3+1 |_|_ | | 1 3 0 0 0 0 0 0 0 1 2+2+1 |_ | | | 2 0 2 0 0 0 0 0 0 0 1 1+1+2+1 |_|_|_ | | 1 1 0 2 0 0 0 0 0 0 0 1 3+1+1 |_ | | | 3 0 0 0 1 0 0 0 0 0 0 0 1 1+2+1+1 |_|_ | | | 1 2 0 0 0 1 0 0 0 0 0 0 0 1 2+1+1+1 |_ | | | | 2 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1+1+1+1+1 |_|_|_|_|_| 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 . For the positive integer k consider the first 2^(k-1) rows of triangle, as shown below. The positive terms of the n-th row are the parts of the n-th region of the diagram of regions of the set of compositions of k. The positive terms of the n-th diagonal are the parts of the n-th composition of k, with compositions in colexicographic order. Triangle begins: 1; 2,1; 1,0,0; 3,2,1,1; 1,0,0,0,0; 2,1,0,0,0,0; 1,0,0,0,0,0,0; 4,3,2,2,1,1,1,1; 1,0,0,0,0,0,0,0,0; 2,1,0,0,0,0,0,0,0,0; 1,0,0,0,0,0,0,0,0,0,0; 3,2,1,1,0,0,0,0,0,0,0,0; 1,0,0,0,0,0,0,0,0,0,0,0,0; 2,1,0,0,0,0,0,0,0,0,0,0,0,0; 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1; ...
Comments