A228354 Indices (k) of partitions in the list of compositions of j in colexicographic order, if 1<=k<=2^(j-1), j>=1.
1, 2, 4, 6, 8, 12, 16, 22, 24, 28, 32, 44, 48, 56, 64, 86, 88, 92, 96, 112, 120, 128, 172, 176, 184, 192, 220, 224, 240, 256, 342, 344, 348, 352, 368, 376, 384, 440, 448, 480, 496, 512, 684, 688, 696, 704, 732, 736, 752, 768, 880, 888, 896, 960, 992, 1024
Offset: 1
Examples
For j = 5 consider the list of compositions of 5 in colexicographic order (see A228525). The indices of the partitions are 1, 2, 4, 6, 8, 12, 16 which are the first A000041(5) terms of this sequence, see below: --------------------------------------------------------- . Compositions Partitions k of 5 of 5 n a(n) --------------------------------------------------------- 1 1+1+1+1+1 * ............... * 1+1+1+1+1 1 1 2 2+1+1+1 * ............... * 2+1+1+1 2 2 3 1+2+1+1 ........... * 3+1+1 3 4 4 3+1+1 * .../ .......... * 2+2+1 4 6 5 1+1+2+1 / ......... * 4+1 5 8 6 2+2+1 * .../ / ...... * 3+2 6 12 7 1+3+1 / / ... * 5 7 16 8 4+1 * .../ / / 9 1+1+1+2 / / 10 2+1+2 / / 11 1+2+2 / / 12 3+2 * .../ / 13 1+1+3 / 14 2+3 / 15 1+4 / 16 5 * .../ . Written as an irregular triangle the sequence begins: 1; 2; 4; 6,8; 12,16; 22,24,28,32; 44,48,56,64; 86,88,92,96,112,120,128; 172,176,184,192,220,224,240,256; 342,344,348,352,368,376,384,440,448,480,496,512; 684,688,696,704,732,736,752,768,880,888,896,960,992,1024; ...
Comments