cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228360 Table read by antidiagonals: T(l,L) is the number of all possible covers of L-length line segment by l-length line segments with allowed gaps < l.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 1, 4, 3, 1, 0, 0, 0, 0, 1, 5, 3, 2, 0, 0, 0, 0, 0, 1, 7, 4, 3, 1, 0, 0, 0, 0, 0, 1, 9, 6, 4, 2, 0, 0, 0, 0, 0, 0, 1, 12, 8, 4, 3, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Philipp O. Tsvetkov, Aug 21 2013

Keywords

Comments

Second row is A228361 which also corresponds to Padovan's spiral numbers A134816 for n>1.
Third row is A228362.
T(l,L) is also the number of compositions of L where parts do not exceeds l and where are no two adjacent parts less than l.
T(2,5) = 3: [2,2,1], [2,1,2], [1,2,2]
T(2,9) = 9: [2,2,2,2,1], [2,2,2,1,2], [2,2,1,2,2], [2,1,2,2,2], [1,2,2,2,2], [2,1,2,1,2,1], [1,2,2,1,2,1], [1,2,1,2,2,1], [1,2,1,2,1,2]
T(3,8) = 6: [3,3,2], [3,1,3,1], [3,2,3], [1,3,3,1], [1,3,1,3], [2,3,3]

Examples

			Table starts:
0, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1,  1,  1, ...
0, 0, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, ...
0, 0, 0, 1, 2, 3, 3, 4, 6, 8, 10, 13, 18, 24, 31, ...
0, 0, 0, 0, 1, 2, 3, 4, 4, 5,  7, 10, 13, 16, 20, ...
0, 0, 0, 0, 0, 1, 2, 3, 4, 5,  5,  6,  8, 11, 15, ...
0, 0, 0, 0, 0, 0, 1, 2, 3, 4,  5,  6,  6,  7,  9, ...
0, 0, 0, 0, 0, 0, 0, 1, 2, 3,  4,  5,  6,  7,  7, ...
0, 0, 0, 0, 0, 0, 0, 0, 1, 2,  3,  4,  5,  6,  7, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 1,  2,  3,  4,  5,  6, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  1,  2,  3,  4,  5, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  1,  2,  3,  4, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  1,  2,  3, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  1,  2, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  1, ...
.....................................................
		

Programs

  • Mathematica
    Gf[l_, z] := (1 - Sum[z^i, {i, l, 2 l - 1}])^-1*Sum[z^i, {i, 0, l - 1}]^2*z^l
    T[l_, L_] := CoefficientList[Series[Gf[l, z], {z, 0, 100}], z][[L + 1]]
    Table[T[n - b + 1, b - 1], {n, 1, 30}, {b, n, 1, -1}] // Flatten

Formula

For all l>=1:
G.f.: (1 - Sum[x^i, {i, l, 2 l - 1}])^-1*Sum[x^i, {i, 0, l - 1}]^2*x^l.
G.f. for l=1: x/(1-x).
G.f. for l=2: x^2*(1+x)^2/(1-x^2-x^3).
G.f. for l=3: x^3*(1 + x + x^2)^2/(1 - x^3 - x^4 - x^5).
For l>1, L>=0:
c[k, l, m] = Sum[(-1)^i binomial[k - 1 - i*l, m - 1] binomial[m, i], {i, 0, floor[(k - m)/l]}] // number of compositions of k into exactly m parts which do not exceed l.
a[L, l, m] = Sum[ binomial[m + 1, m + 1 - j]*c[L - l*m, l - 1, j], {j, 0, m + 1}] //the number of all possible covers of L-length line segment by m l-length line segments.
T[l, L] := Sum[a[L, l, j], {j, 1, ceiling[L/l]}].