A228422 Number of permutations of [n] with exactly two (possibly overlapping) occurrences of some of the consecutive patterns 123, 1432, 2431, 3421.
0, 0, 0, 0, 1, 14, 164, 1589, 15034, 139465, 1334945, 13108425, 134906641, 1443572465, 16238742806, 190546010823, 2347715040542, 30162115442344, 405859441345002, 5684963539755583, 83163913991455832, 1263763900212930657, 20000260465018111763
Offset: 0
Keywords
Examples
a(4) = 1: 1234. a(5) = 14: 12354, 12453, 12543, 13452, 13542, 14532, 21345, 23451, 23541, 24531, 31245, 34521, 41235, 51234.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..185
Crossrefs
Column k=2 of A231210.
Programs
-
Maple
b:= proc(u, o, t, c) option remember; `if`(c<0, 0, `if`(u+o=0, `if`(c=0, 1, 0), add(b(u+j-1, o-j, [2, 2, 2][t], `if`(t=2, c-1, c)), j=1..o)+ add(b(u-j, o+j-1, [1, 3, 1][t], `if`(t=3, c-1, c)), j=1..u))) end: a:= n-> b(n, 0, 1, 2): seq(a(n), n=0..25);
-
Mathematica
b[u_, o_, t_, c_] := b[u, o, t, c] = If[c<0, 0, If[u+o == 0, If[c == 0, 1, 0], Sum[b[u+j-1, o-j, 2, If[t == 2, c-1, c]], {j, 1, o}] + Sum[b[u-j, o+j-1, {1, 3, 1}[[t]], If[t == 3, c-1, c]], {j, 1, u}]]]; a[n_] := b[n, 0, 1, 2]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * (2/Pi)^n * n! * n^2, where c = 1.286210080518397686... . - Vaclav Kotesovec, Aug 28 2014