A228435 Integer areas of the mixtilinear triangles of integer-sided triangles.
6, 14, 24, 54, 56, 84, 96, 112, 124, 126, 130, 150, 154, 156, 210, 216, 224, 266, 294, 336, 342, 344, 350, 366, 384, 436, 448, 456, 486, 496, 504, 520, 531, 546, 570, 600, 616, 624, 630, 660, 686, 726, 756, 814, 840, 864, 896, 924, 1008, 1014, 1064, 1116, 1134
Offset: 1
Keywords
Examples
6 is in the sequence. We use two ways: First way: from the initial triangle (9, 12, 15) the formula given in the comments gives directly the area of the mixtilinear triangle: A' = 54*(9^3 - 9^2*12 - 9*12^2 + 12^3 - 9^2*15 + 6*9*12*15 - 12^2*15 - 9*15^2 - 12*15^2 + 15^3)/(9 + 12 + 15)^3 = 6, where the area of the initial triangle A = 54 is obtained by Heron's formula A = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(18*(18-9)*(18-12)*(18-15)) = sqrt(2916) = 54, where s=18 is the semiperimeter. Second way: by calculation of the sides a', b', c' and by use of Heron's formula. With the formulas given in the link, we find a’ = 9*sqrt(5)/4; b’ = 4*sqrt(13)/3; c’ = 5*sqrt(37)/12. Now, we use Heron's formula with (a',b',c'). We find A' = sqrt(s1*(s1-a')*(s1-b')*(s1-c')) with: s1 = (a' + b' + c')/2 = (9*sqrt(5)/4 + 4*sqrt(13)/3 + 5*sqrt(37)/12)/2. We find A' = 6.
Links
- Eric Weisstein's World of Mathematics, Mixtilinear triangles
Crossrefs
Cf. A188158.
Programs
-
Mathematica
nn = 500; lst = {}; Do[s = (a + b + c)/2; t = a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 6*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[Sqrt[area2] * t/(a + b + c)^3], AppendTo[lst, Sqrt[area2] * t/(a + b + c)^3]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Comments