cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228439 Numbers k dividing u(k), where the Lucas sequence is defined u(i) = u(i-1) - 2*u(i-2) with initial conditions u(0)=0, u(1)=1.

Original entry on oeis.org

1, 7, 49, 343, 2401, 4753, 16807, 33271, 76783, 117649, 232897, 461041, 537481, 823543, 1630279, 3227287, 3762367, 5764801, 7447951, 11411953, 11527201, 19358969, 22591009, 26336569, 40353607, 44720977, 52135657, 79883671, 80690407
Offset: 1

Views

Author

Thomas M. Bridge, Nov 02 2013

Keywords

Comments

Since the absolute value of the discriminant of the characteristic polynomial is prime (=7), the sequence contains every nonnegative integer power of 7. Other terms are formed on multiplication of 7^k by sporadic primes.

Examples

			For k = 0, 1 , ..., 10, there is u(k) = 0,1,1,-1,-3,-1,5,7,-3,-17,-11. Clearly only k = 1 and k = 7 satisfy k divides u(k).
		

Crossrefs

Cf. A107920 (Lucas Sequence u(n)=u(n-1)-2u(n-2)).

Programs

  • Mathematica
    nn = 10000; s = LinearRecurrence[{1, -2}, {1, 1}, nn]; t = {}; Do[If[Mod[s[[n]], n] == 0, AppendTo[t, n]], {n, nn}]; t (* T. D. Noe, Nov 08 2013 *)

Extensions

a(19)-a(29) from Amiram Eldar, May 28 2024