cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228464 Number of arrays of maxima of three adjacent elements of some 0..n array of length 9.

Original entry on oeis.org

44, 383, 1821, 6254, 17487, 42386, 92430, 185727, 349558, 623513, 1063283, 1745172, 2771393, 4276212, 6433004, 9462285, 13640784, 19311619, 26895641, 36904010, 49952067, 66774566, 88242330, 115380395, 149387706, 191658429, 243804943
Offset: 1

Views

Author

R. H. Hardin, Aug 22 2013

Keywords

Comments

See A228461 for explanation of definition.

Examples

			Some solutions for n=4:
  3   0   3   4   4   3   3   4   3   4   2   3   2   0   3   2
  3   0   2   4   4   0   0   2   1   3   4   3   0   0   4   0
  0   0   2   4   0   2   0   2   4   4   4   3   4   0   4   2
  0   0   1   3   1   3   1   2   4   4   4   3   4   4   4   2
  0   0   3   1   1   3   2   2   4   4   0   1   4   4   0   2
  1   0   3   0   4   4   3   2   4   4   0   1   0   4   3   2
  1   3   4   3   4   4   3   1   0   2   1   2   0   3   3   0
		

Crossrefs

Row 7 of A228461. Cf. A217949.

Formula

Empirical: a(n) = (4/315)*n^7 + (1/5)*n^6 + (91/45)*n^5 + (63/8)*n^4 + (2557/180)*n^3 + (517/40)*n^2 + (2419/420)*n + 1 = (n+1) *(n+2) *(32*n^5 + 408*n^4 + 3808*n^3 + 7605*n^2 + 5367*n + 1260)/2520.
Conjectures from Colin Barker, Mar 16 2018: (Start)
G.f.: x*(44 + 31*x - 11*x^2 - 54*x^3 + 75*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)