cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228470 a(n) = 6*a(n-2) + a(n-4), where a(0) = 3, a(1) = 11, a(2) = 18, a(3) = 68.

Original entry on oeis.org

3, 11, 18, 68, 111, 419, 684, 2582, 4215, 15911, 25974, 98048, 160059, 604199, 986328, 3723242, 6078027, 22943651, 37454490, 141385148, 230804967, 871254539, 1422284292, 5368912382, 8764510719, 33084728831, 54009348606, 203877285368, 332820602355
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2013

Keywords

Comments

Let d = A228469. Then a(n) is the least k > d(n) such that trace(k/d(n)) consists of the first n terms of 0101010101010101... See A228469.

Examples

			See A228469.
		

Crossrefs

Cf. A228469.

Programs

  • Mathematica
    c1 = CoefficientList[Series[(2 + 8 x + x^2 + x^3)/(1 - 6 x^2 - x^4), {x, 0, 40}], x]; c2 = CoefficientList[Series[(3 + 11 x + 2 x^3)/(1 - 6 x^2 - x^4), {x, 0, 40}], x]; pairs = Transpose[CoefficientList[Series[{-((3 + 11 x + 2 x^3)/(-1 + 6 x^2 + x^4)), -((2 + 8 x + x^2 + x^3)/(-1 + 6 x^2 + x^4))}, {x, 0, 20}], x]]; t[{x_, y_, }] := t[{x, y}]; t[{x, y_}] := Prepend[If[# > y - #, {y - #, 1}, {#, 0}], y] &[Mod[x, y]]; userIn2[{x_, y_}] := Most[NestWhileList[t, {x, y}, (#[[2]] > 0) &]]; Map[Map[#[[3]] &, Rest[userIn2[#]]] &, pairs] (* Peter J. C. Moses, Aug 20 2013 *)
    LinearRecurrence[{0, 6, 0, 1}, {3, 11, 18, 68}, 30] (* T. D. Noe, Aug 23 2013 *)