A228471 a(n) = 6*a(n-2) + a(n-4), where a(0) = 3, a(1) = 5, a(2) = 19, a(3) = 31.
3, 5, 19, 31, 117, 191, 721, 1177, 4443, 7253, 27379, 44695, 168717, 275423, 1039681, 1697233, 6406803, 10458821, 39480499, 64450159, 243289797, 397159775, 1499219281, 2447408809, 9238605483, 15081612629, 56930852179, 92937084583, 350823718557, 572704120127
Offset: 0
Examples
a(3) = 19 because trace(30/19) = 101, and 19 is the least c for which there is a number b such that trace(b/c) = 101. Successive applications of w are indicated by (30,19)->(19,11)->(11,3)->(3,1). Whereas w finds GCD in 3 steps, u takes 5 steps, as indicated by (30,19)->(19,11)->(11,8)->(8,3)->(3,2)->(2,1).
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,1).
Programs
-
Mathematica
c1 = CoefficientList[Series[(3 + 5 x + x^2 + x^3)/(1 - 6 x^2 - x^4), {x, 0, 40}], x]; c2 = CoefficientList[Series[(5 + 8 x + x^3)/(1 - 6 x^2 - x^4), {x, 0, 40}], x]; pairs = Transpose[CoefficientList[Series[{-((3 + 11 x + 2 x^3)/(-1 + 6 x^2 + x^4)), -((2 + 8 x + x^2 + x^3)/(-1 + 6 x^2 + x^4))}, {x, 0, 20}], x]]; t[{x_, y_, }] := t[{x, y}]; t[{x, y_}] := Prepend[If[# > y - #, {y - #, 1}, {#, 0}], y] &[Mod[x, y]]; userIn2[{x_, y_}] := Most[NestWhileList[t, {x, y}, (#[[2]] > 0) &]]; Map[Map[#[[3]] &, Rest[userIn2[#]]] &, pairs] (* Peter J. C. Moses, Aug 20 2013 *) LinearRecurrence[{0, 6, 0, 1}, {3, 5, 19, 31}, 30] (* T. D. Noe, Aug 23 2013 *)
Formula
G.f.: (3 + 5*x + x^2 + x^3)/(1 - 6*x^2 - x^4). - Peter J. C. Moses, Aug 20 2013 - from Mathematica code
Comments