A228472 a(n) = 6*a(n-2) + a(n-4), where a(0) = 5, a(1) = 8, a(2) = 30, a(3) = 49.
5, 8, 30, 49, 185, 302, 1140, 1861, 7025, 11468, 43290, 70669, 266765, 435482, 1643880, 2683561, 10130045, 16536848, 62424150, 101904649, 384674945, 627964742, 2370473820, 3869693101, 14607517865, 23846123348, 90015581010, 146946433189, 554701003925
Offset: 0
Keywords
Examples
See A228471.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,1).
Programs
-
Mathematica
c1 = CoefficientList[Series[(3 + 5 x + x^2 + x^3)/(1 - 6 x^2 - x^4), {x, 0, 40}], x]; c2 = CoefficientList[Series[(5 + 8 x + x^3)/(1 - 6 x^2 - x^4), {x, 0, 40}], x]; pairs = Transpose[CoefficientList[Series[{-((3 + 11 x + 2 x^3)/(-1 + 6 x^2 + x^4)), -((2 + 8 x + x^2 + x^3)/(-1 + 6 x^2 + x^4))}, {x, 0, 20}], x]]; t[{x_, y_, }] := t[{x, y}]; t[{x, y_}] := Prepend[If[# > y - #, {y - #, 1}, {#, 0}], y] &[Mod[x, y]]; userIn2[{x_, y_}] := Most[NestWhileList[t, {x, y}, (#[[2]] > 0) &]]; Map[Map[#[[3]] &, Rest[userIn2[#]]] &, pairs] (* Peter J. C. Moses, Aug 20 2013 *) LinearRecurrence[{0, 6, 0, 1}, {5, 8, 30, 49}, 30] (* T. D. Noe, Aug 23 2013 *)
Comments