A228531 Triangle read by rows in which row n lists the partitions of n in reverse lexicographic order.
1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 5, 2, 3, 1, 4, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 2, 2, 2, 1, 5, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 3, 4, 2, 5, 2, 2, 3, 1, 6
Offset: 1
Examples
Illustration of initial terms: --------------------------------- . Ordered n j Diagram partition --------------------------------- . _ 1 1 |_| 1; . _ _ 2 1 | _| 2, 2 2 |_|_| 1, 1; . _ _ _ 3 1 | _ _| 3, 3 2 | | _| 1, 2, 3 3 |_|_|_| 1, 1, 1; . _ _ _ _ 4 1 | _ _| 4, 4 2 | _|_ _| 2, 2, 4 3 | | _ _| 1, 3, 4 4 | | | _| 1, 1, 2, 4 5 |_|_|_|_| 1, 1, 1, 1; . Triangle begins: [1]; [2],[1,1]; [3],[1,2],[1,1,1]; [4],[2,2],[1,3],[1,1,2],[1,1,1,1]; [5],[2,3],[1,4],[1,2,2],[1,1,3],[1,1,1,2],[1,1,1,1,1]; [6],[3,3],[2,4],[2,2,2],[1,5],[1,2,3],[1,1,4],[1,1,2,2],[1,1,1,3],[1,1,1,1,2],[1,1,1,1,1,1]; [7],[3,4],[2,5],[2,2,3],[1,6],[1,3,3],[1,2,4],[1,2,2,2],[1,1,5],[1,1,2,3],[1,1,1,4],[1,1,1,2,2],[1,1,1,1,3],[1,1,1,1,1,2],[1,1,1,1,1,1,1]; ...
Links
- OEIS Wiki, Orderings of partitions
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Row lengths are A000041.
Partition sums are A036042.
Partition minima are A182715.
Partition lengths are A333486.
The lexicographic version (sum/lex) is A026791.
Compositions under the same order (sum/revlex) are A066099.
The colexicographic version (sum/colex) is A080576.
The version for non-reversed partitions is A080577.
The length-sensitive version (sum/length/revlex) is A334302.
The Heinz numbers of these partitions are A334436.
Partitions in colexicographic order (sum/colex) are A211992.
Partitions in lexicographic order (sum/lex) are A193073.
Programs
-
Mathematica
revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]]; Join@@Table[Sort[Reverse/@IntegerPartitions[n],revlexsort],{n,0,8}] (* Gus Wiseman, May 23 2020 *)
Comments