cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228534 Triangular array read by rows: T(n,k) is the number of functional digraphs on {1,2,...,n} such that every element is mapped to a recurrent element and there are exactly k cycles, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 3, 1, 11, 9, 1, 58, 71, 18, 1, 409, 620, 245, 30, 1, 3606, 6274, 3255, 625, 45, 1, 38149, 73339, 45724, 11795, 1330, 63, 1, 470856, 977780, 697004, 221529, 33880, 2506, 84, 1, 6641793, 14678712, 11602394, 4309956, 823179, 82908, 4326, 108, 1
Offset: 1

Views

Author

Geoffrey Critzer, Aug 24 2013

Keywords

Comments

The Bell transform of (-1)^n*A009444(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			       1;
       3,      1;
      11,      9,      1;
      58,     71,     18,      1;
     409,    620,    245,     30,     1;
    3606,   6274,   3255,    625,    45,    1;
   38149,  73339,  45724,  11795,  1330,   63,  1;
  470856, 977780, 697004, 221529, 33880, 2506, 84, 1;
		

Crossrefs

Row sums = A006153.
Column 1 = |A009444|.
Cf. A199673.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    g := n -> add(m^(n-m)*m!*binomial(n+1,m), m=1..n+1);
    BellMatrix(g, 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    nn = 8; a = x Exp[x];
    Map[Select[#, # > 0 &] &,
      Drop[Range[0, nn]! CoefficientList[
         Series[1/(1 - a)^y, {x, 0, nn}], {x, y}], 1]] // Grid
    (* Second program: *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, (n+1)! Sum[m^(n-m)/(n-m+1)!, {m, 1, n+1}]], rows = 12];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
  • Sage
    # uses[bell_matrix from A264428, A009444]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: (-1)^n*A009444(n+1), 10) # Peter Luschny, Jan 18 2016

Formula

E.g.f.: 1/(1 - x*exp(x))^y.