A228550 Triangular array read by rows: T(n,k) is the number of simple labeled graphs with n vertices and k components such that each vertex has even degree; n >= 1, 1 <= k <= n.
1, 0, 1, 1, 0, 1, 3, 4, 0, 1, 38, 15, 10, 0, 1, 720, 238, 45, 20, 0, 1, 26614, 5145, 868, 105, 35, 0, 1, 1858122, 215355, 21000, 2408, 210, 56, 0, 1, 250586792, 16797942, 980371, 64260, 5628, 378, 84, 0, 1, 66121926720, 2509697144, 84370230, 3306415, 163800, 11676, 630, 120, 0, 1
Offset: 1
Examples
T(3,1) = 1 counts the complete graph on 3 labeled vertices. T(3,3) = 1 counts the empty graph (no edges) on 3 labeled vertices. Triangular array T(n,k) (with rows n >= 1 and columns k = 1..n) begins: 1; 0, 1; 1, 0, 1; 3, 4, 0, 1; 38, 15, 10, 0, 1; 720, 238, 45, 20, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 1..45, flattened
Programs
-
Mathematica
nn = 8; e = Sum[2^Binomial[n - 1, 2] x^n/n!, {n, 1, nn}]; Prepend[Drop[Map[Insert[#, 0, -2] &, Map[Select[#, # > 0 &] &, Range[0, nn]! CoefficientList[ Series[(e + 1)^y, {x, 0, nn}], {x, y}]]], 2], {1}] // Grid
-
Sage
# uses[bell_matrix from A264428] # Adds a column 1, 0, 0, 0, ... at the left side of the triangle. bell_matrix(lambda n: A033678(n+1), 9) # Peter Luschny, Jan 17 2016
Comments