cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228576 A triangle formed like generalized Pascal's triangle. The rule is T(n,k) = 2*T(n-1,k-1) + T(n-1,k), the left border is n and the right border is n^2 instead of 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 3, 7, 10, 9, 4, 13, 24, 29, 16, 5, 21, 50, 77, 74, 25, 6, 31, 92, 177, 228, 173, 36, 7, 43, 154, 361, 582, 629, 382, 49, 8, 57, 240, 669, 1304, 1793, 1640, 813, 64, 9, 73, 354, 1149, 2642, 4401, 5226, 4093, 1690, 81, 10, 91, 500, 1857, 4940, 9685, 14028, 14545, 9876, 3461, 100
Offset: 1

Views

Author

Boris Putievskiy, Aug 26 2013

Keywords

Examples

			The start of the sequence as triangle array read by rows:
  0;
  1,  1;
  2,  3,  4;
  3,  7, 10,  9;
  4, 13, 24, 29, 16;
  5, 21, 50, 77, 74, 25;
...
		

Crossrefs

Cf. We denote generalized Pascal's like triangle with coefficients a, b and with L(n) on the left border and R(n) on the right border by (a,b,L(n),R(n)). The list of sequences for (1,1,L(n),R(n)) see A228196;
A038207 (1,2,2^n,1), A105728 (1, 2, 1, n+1), A112468 (1,-1,1,1), A112626 (1,2,3^n,1), A119258 (2,1,1,1), A119673 (3,1,1,1), A119725 (3,2,1,1), A119726 (4,2,1,1), A119727 (5,2,1,1), A209705 (2,1,n+1,0);
A002061 (column 2), A000244 (sums of rows r of triangle array - (r-2)(r+1)/2).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return n;
        elif k=n then return n^2;
        else return 2*T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 13 2019
  • Magma
    function T(n,k)
      if k eq 0 then return n;
      elif k eq n then return n^2;
      else return 2*T(n-1,k-1) + T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    T := proc(n, k) option remember;
    if k = 0 then RETURN(n) fi;
    if k = n then RETURN(n^2) fi;
    2*T(n-1, k-1) + T(n-1, k) end:
    seq(seq(T(n,k),k=0..n),n=0..9);  # Peter Luschny, Aug 26 2013
  • Mathematica
    T[n_, 0]:= n; T[n_, n_]:= n^2; T[n_, k_]:= T[n, k] = 2*T[n-1, k-1]+T[n-1, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014 *)
  • PARI
    T(n,k) = if(k==0, n, if(k==n, n^2, 2*T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 13 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return n
        elif (k==n): return n^2
        else: return 2*T(n-1,k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 13 2019
    

Formula

T(n, k) = 2*T(n-1, k-1) + T(n-1, k) for n,k >=0, with T(n,0) = n, T(n,n) = n^2.
Closed-form formula for generalized Pascal's triangle. Let a,b be any numbers. The rule is T(n, k) = a*T(n-1, k-1) + b*T(n-1, k) for n,k >0. Let L(m) and R(m) be the left border and the right border generalized Pascal's triangle, respectively.
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} a^(n-m1) * b^k*R(m1)*C(n+k-m1-1,n-m1) + Sum_{m2=1..k} a^n*b^(k-m2)*L(m2)*C(n+k-m2-1,k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} a^(i-m1)*b^j*R(m1)*C(i+j-m1-1,i-m1) + Sum_{m2=1..j} a^i*b^(j-m2)*L(m2)*C(i+j-m2-1,j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2); n>0.
Some special cases. If a=b=1, then the closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196.
If a=0, then as table read by antidiagonals T(n,k)=b*R(n), as linear sequence a(n)=b*R(i), where i=n-t*(t+1)/2-1, t=floor((-1+sqrt(8*n-7))/2); n>0. The sequence a(n) is the reluctant sequence of sequence b*R(n) - a(n) is triangle array read by rows: row number k coincides with first k elements of the sequence b*R(n). Similarly for b=0, we get T(n,k)=a*L(k).
For this sequence L(m)=m and R(m)=m^2, a=2, b=1. As table read by antidiagonals T(n,k) = Sum_{m1=1..n} 2^(n-m1)*m1^2*C(n+k-m1-1,n-m1) + Sum_{m2=1..k} 2^n*m2*C(n+k-m2-1,k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} 2^(i-m1)*m1^2*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} 2^i*m2*C(i+j-m2-1,j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2); n>0.