A228583 The number of binary pattern classes in the (2,n)-rectangular grid with 8 '1's and (2n-8) '0's: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
0, 0, 0, 0, 1, 15, 135, 777, 3270, 11034, 31650, 80190, 184239, 391105, 777777, 1464255, 2630940, 4540836, 7567380, 12228780, 19229805, 29512035, 44313643, 65239845, 94345218, 134229150, 188145750, 260129610, 355138875, 479217141, 639675765, 845298235, 1106568312
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Cf. A226048.
Programs
-
Magma
[(1/4)*(Binomial(2*n,8) + 3*Binomial(n,4)): n in [0..50]]; // Vincenzo Librandi, Sep 04 2013
-
Mathematica
CoefficientList[Series[- x^4 (3 x^4 + 18 x^3 + 36 x^2 + 6 x + 1) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 04 2013 *)
-
R
a <- 0 for(n in 1:40) a[n+1] <- (1/4)*(choose(2*n,8) + 3*choose(n,4)) a
Formula
a(n) = (1/4)*(binomial(2*n,8) + 3*binomial(n,4)).
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9) n>8, with a(0)=0, a(1)=0, a(2)=0, a(3)=1, a(4)=15, a(5)=135, a(6)=777, a(7)=3270, a(8)=11034.
G.f.: -x^4*(3*x^4+18*x^3+36*x^2+6*x+1) / (x-1)^9. - Colin Barker, Sep 01 2013
Extensions
More terms from Vincenzo Librandi, Sep 04 2013
Comments