A228594 Triangle T(n,k,r,u) read by rows: number of partitions of an n X k X r rectangular cuboid on a cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors, considering only the number of parts; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
T(4,4,4,8) = 2 because the 4 X 4 X 4 rectangular cuboid (in this case a cube) has 2 partitions in which there are 8 nodes unconnected to any of their neighbors. The partitions are (8 2 X 2 X 2 cubes) and (37 1 X 1 X 1 cubes and 1 3 X 3 X 3 cube). The partitions and isolated nodes can be illustrated by expanding into 2 dimensions: ._______. ._______. ._______. ._______. ._______. | | | | . | . | | | | | . | . | | | | |___|___| |___|___| |___|___| |___|___| |___|___| | | | | . | . | | | | | . | . | | | | |___|___| |___|___| |___|___| |___|___| |___|___| ._______. ._______. ._______. ._______. ._______. | |_| | . . |_| | . . |_| | |_| |_|_|_|_| | |_| | . . |_| | . . |_| | |_| |_|_|_|_| |_____|_| |_____|_| |_____|_| |_____|_| |_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_| . The irregular triangle begins: u 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... n k r 1,1,1 1 2,1,1 1 2,2,1 1 2,2,2 1 1 3,1,1 1 3,2,1 1 3,2,2 1 1 3,3,1 1 3,3,2 1 1 3,3,3 1 1 0 0 0 0 0 0 1 4,1,1 1 4,2,1 1 4,2,2 1 1 1 4,3,1 1 4,3,2 1 1 1 4,3,3 1 1 1 0 0 0 0 0 1 4,4,1 1 4,4,2 1 1 1 1 1 4,4,3 1 1 1 1 1 0 0 0 1 4,4,4 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 0 ... 5,1,1 1 5,2,1 1 5,2,2 1 1 1 5,3,1 1 5,3,2 1 1 1 5,3,3 1 1 1 0 0 0 0 0 1 1 5,4,1 1 5,4,2 1 1 1 1 1 5,4,3 1 1 1 1 1 0 0 0 1 1 1 5,4,4 1 1 1 1 1 1 1 1 2 1 1 1 1 0 0 0 0 ... 5,5,1 1 5,5,2 1 1 1 1 1 5,5,3 1 1 1 1 1 0 0 0 1 1 1 1 5,5,4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 0 0 ...
Links
- Christopher Hunt Gribble, Rows 1..34 flattened
- Christopher Hunt Gribble, C++ program
Comments