cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228617 T(n,k) is the number of s in {1,...,n}^n having shortest run with the same value of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 24, 0, 3, 0, 240, 12, 0, 4, 0, 3080, 40, 0, 0, 5, 0, 46410, 210, 30, 0, 0, 6, 0, 822612, 840, 84, 0, 0, 0, 7, 0, 16771832, 5208, 112, 56, 0, 0, 0, 8, 0, 387395856, 23760, 720, 144, 0, 0, 0, 0, 9, 0, 9999848700, 148410, 2610, 180, 90, 0, 0, 0, 0, 10
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2013

Keywords

Comments

Sum_{k=0..n} k*T(n,k) = A228618(n).
Sum_{k=0..n} T(n,k) = A000312(n).
T(2*n,n) = A002939(n) for n>0.
T(2*n+1,n) = A033586(n) for n>1.
T(2*n+2,n) = A085250(n+1) for n>2.
T(2*n+3,n) = A033586(n+1) for n>3.

Examples

			T(3,1) = 24: [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2], [1,3,3], [2,1,1], [2,1,2], [2,1,3], [2,2,1], [2,2,3], [2,3,1], [2,3,2], [2,3,3], [3,1,1], [3,1,2], [3,1,3], [3,2,1], [3,2,2], [3,2,3], [3,3,1], [3,3,2].
T(3,3) =  3: [1,1,1], [2,2,2], [3,3,3].
Triangle T(n,k) begins:
  1;
  0,        1;
  0,        2,    2;
  0,       24,    0,   3;
  0,      240,   12,   0,  4;
  0,     3080,   40,   0,  0,  5;
  0,    46410,  210,  30,  0,  0,  6;
  0,   822612,  840,  84,  0,  0,  0,  7;
  0, 16771832, 5208, 112, 56,  0,  0,  0,  8;
		

Crossrefs

Row sums give: A000312.
Main diagonal gives: A028310.