A228643 Triangle read by rows: T(n,1) = n * (n - 1) + 1 and for k: 1 < k <= n: T(n,k) = T(n,k-1) + T(n-1,k-1).
1, 3, 4, 7, 10, 14, 13, 20, 30, 44, 21, 34, 54, 84, 128, 31, 52, 86, 140, 224, 352, 43, 74, 126, 212, 352, 576, 928, 57, 100, 174, 300, 512, 864, 1440, 2368, 73, 130, 230, 404, 704, 1216, 2080, 3520, 5888, 91, 164, 294, 524, 928, 1632, 2848, 4928, 8448
Offset: 1
Examples
. 1: 1 . 2: 3, 4 . 3: 7, 10, 14 . 4: 13, 20, 30, 44 . 5: 21, 34, 54, 84, 128 . 6: 31, 52, 86,140, 224, 352 . 7: 43, 74,126,212, 352, 576, 928 . 8: 57,100,174,300, 512, 864,1440,2368 . 9: 73,130,230,404, 704,1216,2080,3520, 5888 . 10: 91,164,294,524, 928,1632,2848,4928, 8448,14336 . 11: 111,202,366,660,1184,2112,3744,6592,11520,19968,34304 . 12: 133,244,446,812,1472,2656,4768,8512,15104,26624,46592,80896.
Links
- Reinhard Zumkeller, Rows n = 1..100 of table, flattened
Programs
-
Haskell
a228643 n k = a228643_tabl !! (n-1) !! (k-1) a228643_row n = a228643_tabl !! (n-1) a228643_tabl = map fst $ iterate (\(row, x) -> (scanl (+) (x * (x - 1) + 1) row, x + 1)) ([1], 2)
Comments