cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228660 T(n,k)=Number of nXk binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 3, 8, 5, 8, 5, 14, 34, 12, 16, 8, 38, 78, 140, 29, 32, 13, 80, 335, 416, 574, 70, 64, 21, 194, 968, 2844, 2228, 2348, 169, 128, 34, 434, 3556, 11148, 24109, 11912, 9598, 408, 256, 55, 1016, 11245, 62368, 128740, 203762, 63688, 39224, 985, 512, 89
Offset: 1

Views

Author

R. H. Hardin Aug 29 2013

Keywords

Comments

Table starts
...1...1......2.......3.........5..........8...........13............21
...2...2......8......14........38.........80..........194...........434
...4...5.....34......78.......335........968.........3556.........11245
...8..12....140.....416......2844......11148........62368........275708
..16..29....574....2228.....24109.....128740......1096624.......6780585
..32..70...2348...11912....203762....1482892.....19236832.....166237206
..64.169...9598...63688...1720343...17074988....337258048....4073313193
.128.408..39224..340480..14516920..196565912...5910459096...99770848656
.256.985.160282.1820208.122469941.2262692928.103561279328.2443423182349

Examples

			Some solutions for n=4 k=4
..1..0..0..1....1..0..0..0....1..0..0..1....1..0..1..0....1..0..0..1
..1..0..0..0....1..0..1..0....0..0..0..0....1..0..1..0....0..0..0..0
..0..0..0..0....1..0..1..0....0..0..0..0....1..0..1..0....0..0..1..0
..0..0..0..0....0..0..0..0....1..0..0..0....0..0..1..0....0..0..0..0
		

Crossrefs

Column 1 is A000079(n-1)
Column 2 is A000129
Row 1 is A000045

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2)
k=3: a(n) = 5*a(n-1) -3*a(n-2) -3*a(n-3)
k=4: a(n) = 6*a(n-1) -2*a(n-2) -8*a(n-3)
k=5: a(n) = 12*a(n-1) -27*a(n-2) -32*a(n-3) +49*a(n-4) +20*a(n-5) -5*a(n-6)
k=6: [order 7]
k=7: [order 12]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +3*a(n-2)
n=3: a(n) = 2*a(n-1) +6*a(n-2) -5*a(n-3)
n=4: a(n) = 2*a(n-1) +16*a(n-2) -7*a(n-3) -18*a(n-4)
n=5: [order 7]
n=6: [order 10]
n=7: [order 16]