A228660 T(n,k)=Number of nXk binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.
1, 1, 2, 2, 2, 4, 3, 8, 5, 8, 5, 14, 34, 12, 16, 8, 38, 78, 140, 29, 32, 13, 80, 335, 416, 574, 70, 64, 21, 194, 968, 2844, 2228, 2348, 169, 128, 34, 434, 3556, 11148, 24109, 11912, 9598, 408, 256, 55, 1016, 11245, 62368, 128740, 203762, 63688, 39224, 985, 512, 89
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..0..0..1....1..0..0..0....1..0..0..1....1..0..1..0....1..0..0..1 ..1..0..0..0....1..0..1..0....0..0..0..0....1..0..1..0....0..0..0..0 ..0..0..0..0....1..0..1..0....0..0..0..0....1..0..1..0....0..0..1..0 ..0..0..0..0....0..0..0..0....1..0..0..0....0..0..1..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1057
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2)
k=3: a(n) = 5*a(n-1) -3*a(n-2) -3*a(n-3)
k=4: a(n) = 6*a(n-1) -2*a(n-2) -8*a(n-3)
k=5: a(n) = 12*a(n-1) -27*a(n-2) -32*a(n-3) +49*a(n-4) +20*a(n-5) -5*a(n-6)
k=6: [order 7]
k=7: [order 12]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +3*a(n-2)
n=3: a(n) = 2*a(n-1) +6*a(n-2) -5*a(n-3)
n=4: a(n) = 2*a(n-1) +16*a(n-2) -7*a(n-3) -18*a(n-4)
n=5: [order 7]
n=6: [order 10]
n=7: [order 16]
Comments