A228716 Triangle read by rows in which row n lists the rows (including 0's) of the n-th section of the set of partitions (in colexicographic order) of any integer >= n.
1, 0, 1, 2, 0, 0, 1, 0, 1, 3, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 2, 4, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 3, 2, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 2, 2, 2, 4, 2, 3, 3, 6, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1
Examples
Illustration of the 15 rows of the 7th section (including zeros) of the set of partitions of any integer >= 7 (hence this is also the last section of the set of partitions of 7). Note that the sum of the k-th column is equal to the number of parts >= k, therefore the first differences of the column sums give the number of occurrences of parts k in the section. The same for all sections of all positive integers, see below: ----------------------------- Column: 1 2 3 4 5 6 7 ----------------------------- Row | 1 | 0, 0, 0, 0, 0, 0, 1; 2 | 0, 0, 0, 0, 0, 1; 3 | 0, 0, 0, 0, 1; 4 | 0, 0, 0, 0, 1; 5 | 0, 0, 0, 1; 6 | 0, 0, 0, 1; 7 | 0, 0, 1; 8 | 0, 0, 0, 1; 9 | 0, 0, 1; 10 | 0, 0, 1; 11 | 0, 1; 12 | 3, 2, 2; 13 | 5, 2; 14 | 4, 3; 15 | 7; ----------------------------- Sums: 19, 8, 5, 3, 2, 1, 1 -> Row 7 of triangle A207031. . | /| /| /| /| /| /| . |/ |/ |/ |/ |/ |/ | F.Dif: 11, 3, 2, 1, 1, 0, 1 -> Row 7 of triangle A182703. . Triangle begins: [1]; [0,1],[2]; [0,0,1],[0,1],[3]; [0,0,0,1],[0,0,1],[0,1],[2,2],[4]; [0,0,0,0,1],[0,0,0,1],[0,0,1],[0,0,1],[0,1],[3,2],[5]; [0,0,0,0,0,1],[0,0,0,0,1],[0,0,0,1],[0,0,0,1],[0,0,1],[0,0,1],[0,1],[2,2,2],[4,2],[3,3],[6]; [0,0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,1],[0,0,0,0,1],[0,0,0,1],[0,0,0,1],[0,0,1],[0,0,0,1],[0,0,1],[0,0,1],[0,1],[3,2,2],[5,2],[4,3],[7];
Comments