A228746 Expansion of 8 * phi(q)^4 - 7 * phi(-q)^4 in powers of q where phi() is a Ramanujan theta function.
1, 120, 24, 480, 24, 720, 96, 960, 24, 1560, 144, 1440, 96, 1680, 192, 2880, 24, 2160, 312, 2400, 144, 3840, 288, 2880, 96, 3720, 336, 4800, 192, 3600, 576, 3840, 24, 5760, 432, 5760, 312, 4560, 480, 6720, 144, 5040, 768, 5280, 288, 9360, 576, 5760, 96, 6840
Offset: 0
Examples
G.f. = 1 + 120*q + 24*q^2 + 480*q^3 + 24*q^4 + 720*q^5 + 96*q^6 + 960*q^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Magma
A := Basis( ModularForms( Gamma0(4), 2), 50); A[1] + 120*A[2]; /* Michael Somos, Aug 21 2014 */
-
Mathematica
a[ n_] := SeriesCoefficient[ (8 EllipticTheta[ 3, 0, q]^4 - 7 EllipticTheta[ 4, 0, q]^4), {q, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( 8 * A^4 - 7 * subst(A, x, -x)^4, n))};
Formula
a(n) = 120 * b(n) with b() multiplicative where b(2^e) = 1/5 if e>1, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)), if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 32 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A228745.
G.f.: 8 * (Sum_{k in Z} x^k^2)^4 - 7 * (Sum_{k in Z} (-x)^k^2)^4 .
Sum_{k=1..n} a(k) ~ c * n^2, where c = 4*Pi^2 = 39.478417... (A212002). - Amiram Eldar, Dec 29 2023
Comments