cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228746 Expansion of 8 * phi(q)^4 - 7 * phi(-q)^4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 120, 24, 480, 24, 720, 96, 960, 24, 1560, 144, 1440, 96, 1680, 192, 2880, 24, 2160, 312, 2400, 144, 3840, 288, 2880, 96, 3720, 336, 4800, 192, 3600, 576, 3840, 24, 5760, 432, 5760, 312, 4560, 480, 6720, 144, 5040, 768, 5280, 288, 9360, 576, 5760, 96, 6840
Offset: 0

Views

Author

Michael Somos, Sep 02 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution with A005875 is A004008.

Examples

			G.f. = 1 + 120*q + 24*q^2 + 480*q^3 + 24*q^4 + 720*q^5 + 96*q^6 + 960*q^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(4), 2), 50); A[1] + 120*A[2]; /* Michael Somos, Aug 21 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (8 EllipticTheta[ 3, 0, q]^4 - 7 EllipticTheta[ 4, 0, q]^4), {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( 8 * A^4 - 7 * subst(A, x, -x)^4, n))};
    

Formula

a(n) = 120 * b(n) with b() multiplicative where b(2^e) = 1/5 if e>1, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)), if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 32 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A228745.
G.f.: 8 * (Sum_{k in Z} x^k^2)^4 - 7 * (Sum_{k in Z} (-x)^k^2)^4 .
a(2*n) = A004011(n). a(2*n + 1) = 120 * A008438(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 4*Pi^2 = 39.478417... (A212002). - Amiram Eldar, Dec 29 2023