A228762 Number of undirected circular permutations i_1,...,i_{n-1} of 1,...,n-1 with i_1-i_2, ..., i_{n-2}-i_{n-1}, i_{n-1}-i_1 pairwise distinct modulo n.
1, 0, 1, 0, 7, 0, 39, 0, 419, 0, 7208, 0, 226512, 0, 7885970, 0, 345718580, 0, 18478915794, 0
Offset: 3
Examples
a(3) = 1 since the circular permutation (1,2) of 1,2 meets the requirement. a(5) = 1 due to the circular permutation (1,2,4,3). a(7) = 7 due to the following circular permutations: (1,2,5,4,6,3), (1,2,6,4,3,5), (1,3,2,5,6,4), (1,3,2,6,4,5), (1,3,4,2,6,5), (1,4,5,3,2,6), (1,5,4,2,3,6). a(9) > 0 due to the circular permutation (1,2,5,3,7,6,8,4). a(15) > 0 due to the circular permutation (1,3,14,7,4,11,5,10,9,12,13,2,8,6). a(21) > 0 due to the circular permutation (1,2,11,8,19,15,9,4,10,3,6,13,18,7,5,17,16,20,12,14). Permutations for n = 15, 21 were produced by Qing-Hu Hou at Nankai Univ. after the author told him the conjecture.
Links
- Zhi-Wei Sun, Some new problems in additive combinatorics, arXiv preprint arXiv:1309.1679 [math.NT], 2013-2014.
Programs
-
Maple
A228762 := proc(n) local a, pL,p,mset,per,i ; a := 0 ; pL := combinat[permute](n-2) ; for p in pL do mset := {} ; per := [1,seq(op(i,p)+1,i=1..nops(p))] ; # only directed if op(2,per) <= op(-1,per) then for i from 1 to nops(per) do if i = nops(per) then mset := mset union { modp(n+op(i,per)-op(1,per),n) } ; else mset := mset union { modp(n+op(i,per)-op(i+1,per),n) } ; end if; end do: if nops(mset) = n-1 then a := a+1 ; end if; end if; end do: return a; end proc: for n from 3 do A228762(n) ; end do; # R. J. Mathar, Sep 03 2013
-
Mathematica
A program to compute required circular permutations of 1,...,7 (beginning with 1). To get undirected circular permutations, we should identify one such a permutation with the one of the opposite direction; for example, (1,3,6,4,5,2) is identical to (1,2,5,4,6,3). V[i_]:=Part[Permutations[{2,3,4,5,6}],i] m=0 Do[If[Length[Union[{Mod[1-Part[V[i],1],7]},Table[Mod[Part[V[i],j]-If[j<5,Part[V[i],j+1],1],7],{j,1,5}]]]<6,Goto[aa]]; m=m+1;Print[m,":"," ",1," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]];Label[aa];Continue,{i,1,5!}]
Extensions
a(9) and a(11) added by R. J. Mathar, Sep 03 2013
a(12)-a(22) from Robin Visser, Aug 26 2023
Comments