cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228764 Decimal expansion of the arc length of Sylvester's Bicorn curve.

Original entry on oeis.org

5, 0, 5, 6, 5, 3, 0, 0, 3, 2, 1, 2, 1, 2, 4, 4, 9, 7, 3, 2, 7, 0, 1, 6, 4, 8, 9, 6, 6, 6, 0, 4, 7, 4, 4, 6, 8, 7, 8, 5, 9, 0, 1, 0, 6, 5, 6, 5, 4, 3, 7, 5, 4, 9, 2, 0, 1, 3, 7, 4, 5, 8, 0, 2, 9, 8, 6, 5, 3, 3, 5, 7, 6, 9, 0, 4, 0, 7, 5, 4, 6, 0, 4, 3, 8, 4, 8, 9, 3, 9, 1, 4, 3, 6, 0, 2, 8, 4, 7, 1
Offset: 1

Views

Author

Jean-François Alcover, Sep 03 2013

Keywords

Comments

The Cartesian equation used here is y^2*(t^2-x^2) = (x^2+2*t*y-t^2)^2, with t=1. The arc length (perimeter) is proportional to the parameter t.

Examples

			5.056530032121244973270164896660474468785901065654375492013745802986533576904...
		

Programs

  • Mathematica
    digits = 100; y1[x_] := (1 - x^2)/(2 - Sqrt[1 - x^2]); y2[x_] := (1 - x^2)/(2 + Sqrt[1 - x^2]); i1 = NIntegrate[Sqrt[1 + y1'[x]^2], {x, -1, 1}, WorkingPrecision -> digits+5]; i2 = NIntegrate[Sqrt[1 + y2'[x]^2], {x, -1, 1}, WorkingPrecision -> digits+5]; RealDigits[i1 + i2][[1]][[1 ;; digits]]