A228764 Decimal expansion of the arc length of Sylvester's Bicorn curve.
5, 0, 5, 6, 5, 3, 0, 0, 3, 2, 1, 2, 1, 2, 4, 4, 9, 7, 3, 2, 7, 0, 1, 6, 4, 8, 9, 6, 6, 6, 0, 4, 7, 4, 4, 6, 8, 7, 8, 5, 9, 0, 1, 0, 6, 5, 6, 5, 4, 3, 7, 5, 4, 9, 2, 0, 1, 3, 7, 4, 5, 8, 0, 2, 9, 8, 6, 5, 3, 3, 5, 7, 6, 9, 0, 4, 0, 7, 5, 4, 6, 0, 4, 3, 8, 4, 8, 9, 3, 9, 1, 4, 3, 6, 0, 2, 8, 4, 7, 1
Offset: 1
Examples
5.056530032121244973270164896660474468785901065654375492013745802986533576904...
Programs
-
Mathematica
digits = 100; y1[x_] := (1 - x^2)/(2 - Sqrt[1 - x^2]); y2[x_] := (1 - x^2)/(2 + Sqrt[1 - x^2]); i1 = NIntegrate[Sqrt[1 + y1'[x]^2], {x, -1, 1}, WorkingPrecision -> digits+5]; i2 = NIntegrate[Sqrt[1 + y2'[x]^2], {x, -1, 1}, WorkingPrecision -> digits+5]; RealDigits[i1 + i2][[1]][[1 ;; digits]]
Comments