cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228775 a(n) is the maximal k>=1 such that nextprime(j*n)<=(j+1)*n, j=1,...,k.

Original entry on oeis.org

2, 3, 7, 5, 17, 14, 16, 24, 12, 19, 28, 43, 86, 80, 34, 82, 78, 73, 69, 66, 117, 329, 57, 222, 171, 228, 178, 470, 291, 359, 505, 366, 585, 576, 644, 544, 423, 742, 502, 636, 765, 466, 936, 578, 697, 682, 541, 1442, 640, 627, 615, 603, 2025, 1660, 570, 1833
Offset: 1

Views

Author

Vladimir Shevelev, Sep 04 2013

Keywords

Examples

			If n=3, then, for j=1, nextprime(3)<=6; for j=2, nextprime(6)<=9; for j=3,nextprime(9)<=12; for j=4, nextprime(12)<=15; for j=5, nextprime(15)<=18; for j=6,nextprime(18)<=21; for j=7, nextprime(21)<=24, BUT for j=8, nextprime(24)>27. Thus a(3)=7.
		

Crossrefs

Main sequence is A110835.

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, If[NextPrime[k*n] <= (k+1)*n && NextPrime[(k+1)*n] > (k+2)*n, Return[k]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 05 2013 *)

Formula

Conjectural inequality: for n>=2, a(n) <= log^2(n*a(n)). This essentially corresponds to Cramer's conjecture for prime gaps.

Extensions

More terms from Peter J. C. Moses