A228781 Irregular triangle read by rows: coefficients of minimal polynomial of a certain algebraic number S2(2*k+1) from Q(2*cos(Pi/n)) related to the regular (2*k+1)-gon, k >= 1.
-3, 1, 5, -10, 1, -7, 35, -21, 1, -3, 27, -33, 1, -11, 165, -462, 330, -55, 1, 13, -286, 1287, -1716, 715, -78, 1, 1, -28, 134, -92, 1, 17, -680, 6188, -19448, 24310, -12376, 2380, -136, 1, -19, 969, -11628, 50388, -92378, 75582, -27132, 3876, -171, 1, 1, -58, 655, -1772, 1423, -186, 1
Offset: 1
Examples
The irregular triangle a(k, m) begins: n k /m 0 1 2 3 4 5 6 7 8 3 1: -3 1 5 2: 5 -10 1 7 3: -7 35 -21 1 9 4: -3 27 -33 1 11 5: -11 165 -462 330 -55 1 13 6: 13 -286 1287 -1716 715 -78 1 15 7: 1 -28 134 -92 1 17 8: 17 -680 6188 -19448 24310 -12376 2380 -136 1 ... n = 19, L = 9: -19, 969, -11628, 50388, -92378, 75582, -27132, 3876, -171, 1. n = 21, L = 10: 1, -58, 655, -1772, 1423, -186, 1. p(5, x) = (x - S2(5))*(x - S2(5)^{(1)}), with S2(5) = 3 + 4*rho(5), where rho(5)=phi, the golden section. C(5, x) = x^2 - x - 1 = (x - rho(5))*(x - (1-rho(5))), hence rho(5)^{(1)} = 1-rho(5), and S2(5)^{(1)} = 3 + 4*(1 - rho(5)) = 7 - 4*rho(5). Thus p(5, x) = -16*rho^2 + 21 + 16*rho -10*x + x^2 which becomes modulo C(5,rho(5)), i.e., using rho(5)^2 = rho(5) + 1, finally p(n, 5) = 5 - 10*x + x^2. Conjecture (_Seppo Mustonen_): p(5, x) = binomial(5, 1) - binomial(5, 3)*x + binomial(5, 5)* x^2 = 5 - 10*x + x^2.
Links
- Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], 2012-2017.
- Seppo Mustonen, Lengths of edges and diagonals and sums of them in regular polygons as roots of algebraic equations.
- Seppo Mustonen, Lengths of edges and diagonals and sums of them in regular polygons as roots of algebraic equations. [Local copy]
Formula
a(k, m) = [x^m] p(2*k+1, x), with the minimal polynomial p(2*k+1, x) of S2(2*k+1) given in the power basis in A228780. p(2*k+1, x) is given in a comment above in terms of the S2(2*k+1) and its conjugates S2(2*k+1)^{(j-1)}, j=2, ..., delta(2*k+1), where delta(n) = A055034(n).
Conjecture from Seppo Mustonen, rewritten for the p(n, x) coefficients for odd primes: p(prime(j), x) = Sum_{i=0..imax(j)} (-1)^(imax(j - i))* binomial(prime(j), 2*i+1)*x^i, with imax(j) = (prime(j)-1)/2. See the adapted eq. (5) of the S. Mustonen paper.
Comments