A228785 Table of coefficients of the algebraic number s(2*l+1) = 2*sin(Pi/(2*l+1)) as a polynomial in odd powers of rho(2*(2*l+1)) = 2*cos(Pi/(2*(2*l+1))) (reduced version).
1, -3, 1, 5, -5, 1, -4, 5, -1, 9, -30, 27, -9, 1, -11, 55, -77, 44, -11, 1, 4, -13, 7, -1, -15, 140, -378, 450, -275, 90, -15, 1, 17, -204, 714, -1122, 935, -442, 119, -17, 1, -4, 25, -26, 9, -1, 0, 21, -385, 2079, -5148, 7007, -5733, 2940, -952, 189, -21, 1, -8, 126, -539, 967, -870, 429, -118, 17, -1, 0
Offset: 1
Examples
The table a(l,m), with n = 2*l+1, begins: n, l \m 0 1 2 3 4 5 6 7 8 9 10 3, 1: 1 5, 2: -3 1 7, 3: 5 -5 1 9, 4: -4 5 -1 11, 5: 9 -30 27 -9 1 13, 6: -11 55 -77 44 -11 1 15, 7: 4 -13 7 -1 17, 8: -15 140 -378 450 -275 90 -15 1 19, 9: 17 -204 714 -1122 935 -442 119 -17 1 21, 10: -4 25 -26 9 -1 0 23, 11: 21 -385 2079 -5148 7007 -5733 2940 -952 189 -21 1 25, 12: -8 126 -539 967 -870 429 -118 17 -1 0 27, 13: 4 -41 70 -43 11 -1 0 0 0 ... n = 29 l = 14: -27, 819, -7371, 30888, -72930, 107406, -104652, 69768, -32319, 10395, -2277, 324, -27, 1. n = 5, l=2: s(5) = -3*rho(10) + rho(10)^3 = (tau - 1)*sqrt(2 + tau), approximately 1.175570504, where tau = (1 + sqrt(5))/2 (golden section). n = 17, l = 8: s(17) = -15*x + 140*x^3 - 378*x^5 + 450*x^7 - 275*x^9 + 90*x^11 - 15*x^13 + 1*x^15, with x = rho(34) = 2*cos(Pi/34). s(17) is approximately 0.3674990356. With the length row l = 8 the degree of the algebraic number s(17) = 2*sin(Pi/17) is therefore 2*8 = 16. See A228787 for the decimal expansion of s(17) and A228788 for the one of rho(34).
Crossrefs
Formula
a(l,m) = [x^(2*m+1)](s(2*l+1,x)(mod C(2*(2l+1),x))), with s(2*l+1,x) = sum((-1)^(l-1-s)* A111125(l1,s)*x^(2*s+1), s=0..l-1), l >= 1, m=0, ..., (delta(2*(2*l+1))/2 - 1), with delta(n) = A055034(n).
Rows 9,15,21,27 are coefficients of polynomials in reciprocal powers of u for rows n=2,4,6,8 generated by the o.g.f. (u-4)/(u-ux+x^2) of A267633. These polynomials in u occur in a moving average of the polynomials of A140882 interlaced with these polynomials. - Tom Copeland, Jan 16 2016
Comments