A228786 Table of coefficients of the minimal polynomials of 2*sin(Pi/n), n >= 1.
0, 1, -2, 1, -3, 0, 1, -2, 0, 1, 5, 0, -5, 0, 1, -1, 1, -7, 0, 14, 0, -7, 0, 1, 2, 0, -4, 0, 1, -3, 0, 9, 0, -6, 0, 1, -1, 1, 1, -11, 0, 55, 0, -77, 0, 44, 0, -11, 0, 1, 1, 0, -4, 0, 1, 13, 0, -91, 0, 182, 0, -156, 0, 65, 0, -13, 0, 1, 1, -2, -1, 1, 1, 0, -8, 0, 14, 0, -7, 0, 1, 2, 0, -16, 0, 20, 0, -8, 0, 1, 17, 0, -204, 0, 714, 0, -1122, 0, 935, 0, -442, 0, 119, 0, -17, 0, 1, 1, -3, 0, 1
Offset: 1
Examples
The table a(n, m) starts: n\m 0 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 1: 0 1 2: -2 1 3: -3 0 1 4: -2 0 1 5: 5 0 -5 0 1 6: -1 1 7: -7 0 14 0 -7 0 1 8: 2 0 -4 0 1 9: -3 0 9 0 -6 0 1 10: -1 1 1 11: -11 0 55 0 -77 0 44 0 -11 0 1 12: 1 0 -4 0 1 13: 13 0 -91 0 182 0 -156 0 65 0 -13 0 1 14: 1 -2 -1 1 15: 1 0 -8 0 14 0 -7 0 1 16: 2 0 -16 0 20 0 -8 0 1 17: 17 0 -204 0 714 0 -1122 0 935 0 -442 0 119 0 -17 0 1 18: 1 -3 0 1 ... n = 19: [-19, 0, 285, 0, -1254, 0, 2508, 0, -2717, 0, 1729, 0, -665, 0, 152, 0, -19, 0, 1], n = 20: [1, 0, -12, 0, 19, 0, -8, 0, 1] n = 5: ps(5,x) = 5 -5*x^2 +1*x^4, with the zeros s(5) = sqrt(3 - tau), sqrt(2 + tau) = tau*s(5) and their negative values, where tau =rho(5) is the golden section. tau*s(5) is the length ratio diagonal/radius in the pentagon. n = 7: ps(7,x) = -7 + 14*x^2 -7*x^4 + 1*x^6, with the positive zeros s(7) (side/R) about 0.868, s(7)*rho(7) (smallest diagonal/R) about 1.564, and s(7)*(rho(7)^2-1) (longer diagonal/R) about 1.950 in the heptagon inscribed in a circle with radius R. n = 8: ps(8,x) = 2 -4*x^2 + x^4, with the positive zeros s(8) = sqrt(2-sqrt(2)) and rho(8) = sqrt(2+sqrt(2)) (smallest diagonal/side). n = 10: ps(10,x) = -1 + x + x^2 with the positive zero s(10) = tau - 1 (the negative solution is -tau).
Formula
a(n, m) = [x^m](minimal polynomial ps(n, x) of 2*sin(Pi/n) over the rationals), n >= 1, m = 0, ..., gamma(n), with gamma(n) = A055035(n).
ps(n,x) = Product_{k=0..floor(c(2*n)/n) and gcd(k, c(2*n)) = 1} (x - 2*cos(2*Pi*k/c(2*n)), with c(2*n) = A178182(2*n), for n >= 1. There are gamma(n) = A055035(n) zeros. - Wolfdieter Lang, Oct 30 2019
Comments