A228808 a(n) = Sum_{k=0..n} binomial(n*k, k^2).
1, 2, 4, 20, 296, 10067, 927100, 219541877, 110728186648, 137502766579907, 448577320868198789, 3169529341990169816462, 51243646781214826181569316, 2201837465728010770618930322223, 215520476721579201896200887266792583, 45634827026091489574547858030506357191920
Offset: 0
Keywords
Examples
L.g.f.: L(x) = 2*x + 4*x^2/2 + 20*x^3/3 + 296*x^4/4 + 10067*x^5/5 +... where exp(L(x)) = 1 + 2*x + 4*x^2 + 12*x^3 + 94*x^4 + 2195*x^5 + 158904*x^6 + 31681195*x^7 +...+ A228809(n)*x^n +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..73
Programs
-
Mathematica
Table[Sum[Binomial[n*k, k^2],{k,0,n}],{n,0,15}] (* Vaclav Kotesovec, Sep 06 2013 *)
-
PARI
a(n)=sum(k=0,n,binomial(n*k,k^2)) for(n=0,20,print1(a(n),", "))
Formula
Limit n->infinity a(n)^(1/n^2) = (1-r)^(-r/2) = 1.533628065110458582053143..., where r = A220359 = 0.70350607643066243... is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Sep 06 2013
Comments