A228820 Sum of positive F-ranks of all compositions of n. Also, sum of positive L-ranks of all compositions of n (see comments lines for definition).
0, 0, 1, 3, 9, 24, 60, 145, 342, 791, 1800, 4041, 8971, 19733, 43077, 93441, 201592, 432867, 925574, 1971633, 4185537, 8857634, 18691421, 39339638, 82599634, 173050951, 361825484, 755140789, 1573359111, 3273103135, 6799507189, 14106802811, 29231731788
Offset: 0
Keywords
Examples
Table 1. Compositions of 4 in lexicographic order. --------------------------------------------------------- j Composition Diagram F-rank L-rank --------------------------------------------------------- . _ _ _ _ 1 [1,1,1,1] | | | |_| 1 - 4 = -3 1 - 4 = -3 2 [1,1,2] | | |_ _| 1 - 3 = -2 2 - 3 = -1 3 [1,2,1] | | |_| 1 - 3 = -2 1 - 3 = -2 4 [1,3] | |_ _ _| 1 - 2 = -1 4 - 2 = 2 5 [2,1,1] | | |_| 2 - 3 = -1 1 - 3 = -2 6 [2,2] | |_ _| 2 - 2 = 0 2 - 2 = 0 7 [3,1] | |_| 4 - 2 = 2 1 - 2 = -1 8 [4] |_ _ _ _| 8 - 1 = 7 8 - 1 = 7 --- --- Total sum: 0 0 Sum of positive terms: 9 9 . Table 2. Compositions of 4 in colexicographic order. --------------------------------------------------------- j Composition Diagram F-rank L-rank --------------------------------------------------------- . _ _ _ _ 1 [1,1,1,1] |_| | | | 1 - 4 = -3 1 - 4 = -3 2 [2,1,1] |_ _| | | 2 - 3 = -1 1 - 3 = -2 3 [1,2,1] |_| | | 1 - 3 = -2 1 - 3 = -2 4 [3,1] |_ _ _| | 4 - 2 = 2 1 - 2 = -1 5 [1,1,2] |_| | | 1 - 3 = -2 2 - 3 = -1 6 [2,2] |_ _| | 2 - 2 = 0 2 - 2 = 0 7 [1,3] |_| | 1 - 2 = -1 4 - 2 = 2 8 [4] |_ _ _ _| 8 - 1 = 7 8 - 1 = 7 --- --- Total sum: 0 0 Sum of positive terms: 9 9 . The sum of positive F-ranks of all compositions of 4 is 2+7 = 9, the same as the sum of positive L-ranks, so a(4) = 9.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= n-> add(add(binomial(n-k-1, i-2)*(2^(k-1)-i), i=1..min(2^(k-1)-1, n-k+1)), k=1..n): seq(a(n), n=0..50); # Alois P. Heinz, Sep 09 2013
-
Mathematica
a[n_] := Sum[Sum[Binomial[n-k-1, i-2]*(2^(k-1)-i), {i, 1, Min[2^(k-1) - 1, n - k + 1]}], {k, 1, n}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Sep 09 2013
Comments