cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228837 a(n) = Sum_{k=0..[n/2]} binomial((n-k)^2, (n-2*k)*k).

Original entry on oeis.org

1, 1, 2, 5, 38, 597, 14472, 554653, 44421258, 8933194659, 3408672951784, 1984802013951149, 1803179670478111304, 3323206887194925488269, 15156709454119350064982141, 132889643918499982093215167857, 1784438297905511051093397284187186
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2013

Keywords

Comments

Equals the antidiagonal sums of triangle A228836.

Crossrefs

Cf. variants: A209331, A228833, A123165.

Programs

  • Mathematica
    Table[Sum[Binomial[(n-k)^2, (n-2*k)*k],{k,0,Floor[n/2]}],{n,0,15}] (* Vaclav Kotesovec, Sep 05 2013 *)
  • PARI
    {a(n)=sum(k=0,n\2,binomial((n-k)^2, (n-2*k)*k))}
    for(n=0,30,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = ((1-r)^2/(r*(1-2*r)))^((1-3*r)*(1-r)/(3*(1-2*r))) = 1.36198508972775011599..., where r = 0.195220321930105755... is the root of the equation (1-3*r+3*r^2)^(3*(2*r-1)) = (r*(1-2*r))^(4*r-1) * (1-r)^(4*(r-1)). - Vaclav Kotesovec, added Sep 05 2013, simplified Mar 04 2014