cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228842 Binomial transform of A014448.

Original entry on oeis.org

2, 6, 28, 144, 752, 3936, 20608, 107904, 564992, 2958336, 15490048, 81106944, 424681472, 2223661056, 11643240448, 60964798464, 319215828992, 1671435780096, 8751751364608, 45824765067264, 239941584945152, 1256350449401856, 6578336356630528, 34444616342175744
Offset: 0

Views

Author

R. J. Mathar, Nov 10 2013

Keywords

Comments

The binomial transform of this sequence is 2, 8, 42, 248,... = 2*A108404(n).

References

  • C. Smith, A Treatise on Algebra, Macmillan, London, 5th ed., 1950, p. 360, Example 44.

Crossrefs

When divided by 2^n this becomes(essentially) A005248.

Programs

  • Mathematica
    CoefficientList[Series[2*(1 - 3 x)/(1 - 6 x + 4 x^2), {x, 0, 23}], x] (* Michael De Vlieger, Aug 26 2021 *)
    LinearRecurrence[{6,-4},{2,6},30] (* Harvey P. Dale, Jun 30 2024 *)
  • PARI
    Vec(2*(1 - 3*x) / (1 - 6*x + 4*x^2) + O(x^30)) \\ Colin Barker, Sep 21 2017

Formula

G.f.: 2*( 1-3*x ) / ( 1-6*x+4*x^2 ).
a(n) = 2*A098648(n).
From Colin Barker, Sep 21 2017: (Start)
a(n) = (3-sqrt(5))^n + (3+sqrt(5))^n.
a(n) = 6*a(n-1) - 4*a(n-2) for n>1.
(End)