A228899 Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n, k)^(k+1) * y^k ), as read by rows.
1, 1, 1, 1, 3, 1, 1, 6, 12, 1, 1, 10, 71, 76, 1, 1, 15, 281, 2153, 701, 1, 1, 21, 861, 29166, 129509, 8477, 1, 1, 28, 2212, 244725, 7664343, 12391414, 126126, 1, 1, 36, 4998, 1477391, 218030412, 3875325345, 1699148352, 2223278, 1, 1, 45, 10242, 7017577, 3748460115, 448713017405, 3284369541969, 315158247170, 45269999, 1
Offset: 0
Examples
This triangle begins: 1; 1, 1; 1, 3, 1; 1, 6, 12, 1; 1, 10, 71, 76, 1; 1, 15, 281, 2153, 701, 1; 1, 21, 861, 29166, 129509, 8477, 1; 1, 28, 2212, 244725, 7664343, 12391414, 126126, 1; 1, 36, 4998, 1477391, 218030412, 3875325345, 1699148352, 2223278, 1; 1, 45, 10242, 7017577, 3748460115, 448713017405, 3284369541969, 315158247170, 45269999, 1; ... ... G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+6*y+12*y^2+y^3)*x^3 + (1+10*y+71*y^2+76*y^3+y^4)*x^4 + (1+15*y+281*y^2+2153*y^3+701*y^4+y^5)*x^5 +... The logarithm of the g.f. equals the series: log(A(x)) = (1 + x)*x + (1 + 2^2*x + x^2)*x^2/2 + (1+ 3^2*y + 3^3*y^2 + y^3)*x^3/3 + (1+ 4^2*y + 6^3*y^2 + 4^4*y^3 + x^4)*x^4/4 + (1+ 5^2*y + 10^3*y^2 + 10^4*y^3 + 5^5*y^4 + y^5)*x^5/5 + (1+ 6^2*y + 15^3*y^2 + 20^4*y^3 + 15^5*y^4 + 6^6*y^5 + y^6)*x^6/6 +... in which the coefficients form A219207(n,k) = binomial(n, k)^(k+1).
Crossrefs
Programs
-
PARI
{T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m, j)^(j+1)*y^j))+x*O(x^n)), n, x), k, y)} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
Comments