cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228908 Primes of the form T(n) + S(n) + C(n) + 1 where T(n), S(n) and C(n) are the n-th triangular, square and cube numbers.

Original entry on oeis.org

43, 421, 613, 1951, 7411, 12973, 23143, 31249, 48619, 114073, 210631, 256033, 321403, 365509, 381061, 502441, 521641, 669901, 766039, 791431, 1015051, 1108693, 1242271, 1929751, 2121793, 2773471, 3759991, 3832999, 4057681, 5498329, 7133281, 7472011, 7587259
Offset: 1

Views

Author

K. D. Bajpai, Sep 14 2013

Keywords

Comments

Also primes of the form n^3 + 3/2*n^2 + 1/2*n + 1.

Examples

			a(3) = 613: T(8)+S(8)+C(8)+1 = 1/2*8*(8+1)+8^2+8^3+1 = 613 which is prime.
a(4) = 1951: T(12)+S(12)+C(12)+1 = 1/2*12*(12+1)+12^2+12^3+1 = 1951 which is prime.
		

Crossrefs

Programs

  • Maple
    KD:= proc() local a,b,c,d; a:= (1/2)*n*(n+1); b:=n^2; c:=n^3; d:=a+b+c+1; if isprime(d) then   RETURN(d): fi; end:seq(KD(),n=1..500);
  • PARI
    select(isprime, vector(100,n,n^3+3/2*n^2+n/2+1)) \\ Charles R Greathouse IV, Sep 15 2013