cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228931 Optimal ascending continued fraction expansion of sqrt(2)-1.

Original entry on oeis.org

2, -6, 34, 1154, 1331714, 1773462177794, 3145168096065837266706434, 9892082352510403757550172975146702122837936996354
Offset: 1

Views

Author

Giovanni Artico, Sep 09 2013

Keywords

Comments

See A228929 for the definition of "optimal ascending continued fraction".
Conjecture: The terms from a(3) are all positive and can be generated by the recurrence relation a(k+1) = a(k)^2 - 2.
This relation was studied by Lucas with reference to Engel expansion.
This recurrence is not peculiar of sqrt(2) but is present in the expansion of the square root of many other numbers, starting from some term onward, but not for all numbers. Here is a list of the numbers in range 1..200 having the recurrence: 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 45, 47, 48, 50, 51, 52, 54, 55, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 70, 71, 72, 74, 75, 77, 78, 79, 80, 82, 83, 84, 87, 88, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 110, 111, 112, 114, 117, 119, 120, 122, 123, 124, 126, 128, 130, 132, 133, 135, 136, 138, 140, 141, 142, 143, 145, 146, 147, 148, 150, 152, 155, 156, 158, 162, 164, 165, 167, 168, 170, 171, 174, 175, 178, 180, 182, 183, 185, 187, 188, 189, 192, 194, 195, 197, 198, 200
Essentially the same as A003423. - R. J. Mathar, Sep 21 2013

Examples

			sqrt(2)=1+1/2*(1-1/6*(1+1/34*(1+1/1154*(1+1/1331714*(1+1/1773462177794*(1+.....))))))
		

Crossrefs

Programs

  • Maple
    ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
    # List the first 8 terms of the expansion of sqrt(2)-1
    ArticoExp(sqrt(2),8)
  • Mathematica
    Flatten[{2, RecurrenceTable[{a[n] == a[n-1]^2 - 2, a[2] == -6}, a, {n, 2, 10}]}] (* Vaclav Kotesovec, Sep 20 2013 *)

Formula

a(n) = a(n-1)^2 - 2, for n > 2.
For n>2, a(n) = (sqrt(2)+1)^(2^(n-1)) + (sqrt(2)-1)^(2^(n-1)). - Vaclav Kotesovec, Sep 20 2013

Extensions

Added a pdf file with a proof of the conjecture by Giovanni Artico