A228941 The n-th convergent of CF(e) is the a(n)-th convergent of DCF(e), the delayed continued fraction of e.
1, 3, 4, 5, 9, 10, 11, 17, 18, 19, 27, 28, 29, 39, 40, 41, 53, 54, 55, 69, 70, 71, 87, 88, 89, 107, 108, 109
Offset: 1
Examples
The convergents of CF(e) are 2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, ...; the convergents of DCF(e) are 2, 5/2, 3, 8/3, 11/4, 30/11, 49/18, 68/25, 19/7, 87/32, 106/39,...; a(5) = 9 because 19/7 is the 9th convergent of DCF(e).
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; x[0] = E; s[x_] := s[x] = If[FractionalPart[x] < 1/2, Ceiling[x], Floor[x]]; f[n_] := f[n] = s[Abs[x[n]]]*Sign[x[n]]; x[n_] := 1/(x[n - 1] - f[n - 1]); t = Table[f[n], {n, 0, 120}] ;(* A228825; delayed cf of x[0] *); t1 = Convergents[t]; t2 = Convergents[ContinuedFraction[E, 120]]; Flatten[Table[Position[t1, t2[[n]]], {n, 1, 28}]]
Formula
Empirical g.f.: x*(x^5+x^3-x^2-2*x-1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Sep 13 2013
Comments