cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228954 Bisection of A195240(n).

Original entry on oeis.org

1, 7, 11, 7, 19, 337, 5, -1681, 22133, -87223, 427291, -118181363, 4276553, -11874730297, 4307920641583, -3854660520481, 1288843929185, -13157635776526258889, 1464996956920781, -130541359248224557643
Offset: 0

Views

Author

Paul Curtz, Sep 09 2013

Keywords

Comments

The first bisection is b(n) = 0, 1, 8, 10, 8, 14, 1028, -2, 1936, -21734,... .
a(n) and b(n) are twice linked to Bernoulli numbers (A027641(n+4) or A164555(n+4))/A027642(n+4).

Programs

  • Mathematica
    evb = Join[{0, 1, 0}, Table[BernoulliB[n], {n, 2, 42}]]; ievb = Table[ Sum[Binomial[n, k]*evb[[k + 1]], {k, 0, n}], {n, 0, Length[evb] - 3}]; A195240 = Differences[ievb, 2] // Numerator; Partition[A195240, 2][[All, 2]]
    (* or *)
    A000367[n_] := BernoulliB[2*n] // Numerator; A001897[n_] := -2*(2^(2*n - 1) - 1)*BernoulliB[2*n] // Denominator; a[0] = 1; a[n_] := (A000367[n + 1] + A001897[n + 1])/2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Sep 09 2013, after R. J. Mathar *)

Formula

A195240(2n+1).
a(n+1) = b(n+2) + A000367(n+2).
a(n+1) = A001897(n+2) - b(n+2).
2*a(n+1) = A000367(n+2) + A001897(n+2).

Extensions

More terms from Jean-François Alcover, Sep 09 2013