cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229043 Series reversion of (sqrt(1+4*x) - 1)/2 - x^3.

Original entry on oeis.org

1, 1, 1, 5, 12, 35, 122, 390, 1320, 4631, 16185, 57707, 208348, 756840, 2775012, 10246206, 38043339, 142045387, 532888840, 2007554241, 7592537590, 28814794105, 109702322730, 418868083725, 1603584623355, 6154156653687, 23671591739306, 91242219125712, 352378515196920, 1363360128627380
Offset: 1

Views

Author

Paul D. Hanna, Nov 02 2013

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + 5*x^4 + 12*x^5 + 35*x^6 + 122*x^7 + 390*x^8 +...
where the series reversion of g.f. A(x) begins:
(sqrt(1+4*x) - 1)/2 - x^3 = x - x^2 + x^3 - 5*x^4 + 14*x^5 - 42*x^6 + 132*x^7 - 429*x^8 +...+ (-1)^(n-1)*A000108(n-1)*x^n +...
The cube of the g.f. equals the series:
A(x)^3 = x^3*(1+x)^3 + d/dx x^6*(1+x)^6/2! + d^2/dx^2 x^9*(1+x)^9/3! + d^3/dx^3 x^12*(1+x)^12/4! + d^4/dx^4 x^15*(1+x)^15/5! +...
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 22*x^6 + 72*x^7 + 225*x^8 + 790*x^9 + 2739*x^10 +...
RELATED EXPANSIONS.
G.f. A(x) = G(x)*(1 + G(x)) = (G(x) - x)^(1/3) where G(x) begins:
G(x) = x + x^3 + 3*x^4 + 6*x^5 + 22*x^6 + 72*x^7 + 225*x^8 + 790*x^9 +...
		

Crossrefs

Cf. A229042.

Programs

  • Maple
    with(gfun):
    S:= solve((sqrt(1+4*x)-1)/2-x^3=y, x):
    DE:= holexprtodiffeq(S,g(y)):
    Rec:= diffeqtorec(DE,g(y),a(n)):
    f:= rectoproc(Rec,a(n),remember):
    map(f, [$1..40]); # Robert Israel, May 14 2018
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[(Sqrt[1+4*x]-1)/2-x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Jan 22 2014 *)
  • PARI
    {a(n)=polcoeff( serreverse( (sqrt(1+4*x +x*O(x^n)) - 1)/2 - x^3 ), n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    /* G.f. A(x) = sqrt(G(x) - x) where G(x) = x + G(x)^3*(1 + G(x))^3 */
    {a(n)=local(G=serreverse(x-x^3*(1+x)^3+x^3*O(x^n)));polcoeff((G-x)^(1/3),n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} \\ n-th derivative
    {a(n)=local(A3=x); A3=sum(m=1, n, Dx(m-1, x^(3*m)*(1+x+x*O(x^n))^(3*m)/m!)); polcoeff(A3^(1/3), n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    my(x='x+O('x^99)); Vec(serreverse(((1+4*x)^(1/2)-1)/2-x^3)) \\ Altug Alkan, May 14 2018

Formula

G.f. A(x) satisfies:
(1) A(x)^3 = Sum_{n>=1} ( d^(n-1)/dx^(n-1) x^(3*n)*(1+x)^(3*n)/n! ).
(2) A(x)^3 = A(x)*C(-A(x)) - x^3, where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
(3) A(x) = G(x)*(1 + G(x)) where G(x) = x + A(x)^3.
a(n) ~ r^(1/2-n) / (2 * sqrt(3*Pi*s*(1+9*s^5)) * n^(3/2)), where s = 0.44683030245197... is the root of the equation 9*s^4*(1+4*s) = 1 and r = -1/2 + 1/(6*s^2) - s^3 = 0.24555068038... - Vaclav Kotesovec, Jan 22 2014
D-finite with recurrence: Sequence satisfies a 9th-order linear recurrence with coefficients that are polynomials in n of degree 5: see link. - Robert Israel, May 14 2018

Extensions

Offset corrected by Vaclav Kotesovec, Jan 22 2014