A229043 Series reversion of (sqrt(1+4*x) - 1)/2 - x^3.
1, 1, 1, 5, 12, 35, 122, 390, 1320, 4631, 16185, 57707, 208348, 756840, 2775012, 10246206, 38043339, 142045387, 532888840, 2007554241, 7592537590, 28814794105, 109702322730, 418868083725, 1603584623355, 6154156653687, 23671591739306, 91242219125712, 352378515196920, 1363360128627380
Offset: 1
Keywords
Examples
G.f.: A(x) = x + x^2 + x^3 + 5*x^4 + 12*x^5 + 35*x^6 + 122*x^7 + 390*x^8 +... where the series reversion of g.f. A(x) begins: (sqrt(1+4*x) - 1)/2 - x^3 = x - x^2 + x^3 - 5*x^4 + 14*x^5 - 42*x^6 + 132*x^7 - 429*x^8 +...+ (-1)^(n-1)*A000108(n-1)*x^n +... The cube of the g.f. equals the series: A(x)^3 = x^3*(1+x)^3 + d/dx x^6*(1+x)^6/2! + d^2/dx^2 x^9*(1+x)^9/3! + d^3/dx^3 x^12*(1+x)^12/4! + d^4/dx^4 x^15*(1+x)^15/5! +... A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 22*x^6 + 72*x^7 + 225*x^8 + 790*x^9 + 2739*x^10 +... RELATED EXPANSIONS. G.f. A(x) = G(x)*(1 + G(x)) = (G(x) - x)^(1/3) where G(x) begins: G(x) = x + x^3 + 3*x^4 + 6*x^5 + 22*x^6 + 72*x^7 + 225*x^8 + 790*x^9 +...
Links
- Robert Israel, Table of n, a(n) for n = 1..1647
- Robert Israel, Recurrence
Crossrefs
Cf. A229042.
Programs
-
Maple
with(gfun): S:= solve((sqrt(1+4*x)-1)/2-x^3=y, x): DE:= holexprtodiffeq(S,g(y)): Rec:= diffeqtorec(DE,g(y),a(n)): f:= rectoproc(Rec,a(n),remember): map(f, [$1..40]); # Robert Israel, May 14 2018
-
Mathematica
Rest[CoefficientList[InverseSeries[Series[(Sqrt[1+4*x]-1)/2-x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Jan 22 2014 *)
-
PARI
{a(n)=polcoeff( serreverse( (sqrt(1+4*x +x*O(x^n)) - 1)/2 - x^3 ), n)} for(n=1, 30, print1(a(n), ", "))
-
PARI
/* G.f. A(x) = sqrt(G(x) - x) where G(x) = x + G(x)^3*(1 + G(x))^3 */ {a(n)=local(G=serreverse(x-x^3*(1+x)^3+x^3*O(x^n)));polcoeff((G-x)^(1/3),n)} for(n=1, 30, print1(a(n), ", "))
-
PARI
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} \\ n-th derivative {a(n)=local(A3=x); A3=sum(m=1, n, Dx(m-1, x^(3*m)*(1+x+x*O(x^n))^(3*m)/m!)); polcoeff(A3^(1/3), n)} for(n=1, 30, print1(a(n), ", "))
-
PARI
my(x='x+O('x^99)); Vec(serreverse(((1+4*x)^(1/2)-1)/2-x^3)) \\ Altug Alkan, May 14 2018
Formula
G.f. A(x) satisfies:
(1) A(x)^3 = Sum_{n>=1} ( d^(n-1)/dx^(n-1) x^(3*n)*(1+x)^(3*n)/n! ).
(2) A(x)^3 = A(x)*C(-A(x)) - x^3, where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
(3) A(x) = G(x)*(1 + G(x)) where G(x) = x + A(x)^3.
a(n) ~ r^(1/2-n) / (2 * sqrt(3*Pi*s*(1+9*s^5)) * n^(3/2)), where s = 0.44683030245197... is the root of the equation 9*s^4*(1+4*s) = 1 and r = -1/2 + 1/(6*s^2) - s^3 = 0.24555068038... - Vaclav Kotesovec, Jan 22 2014
D-finite with recurrence: Sequence satisfies a 9th-order linear recurrence with coefficients that are polynomials in n of degree 5: see link. - Robert Israel, May 14 2018
Extensions
Offset corrected by Vaclav Kotesovec, Jan 22 2014