A229044 G.f. A(x) satisfies: [x^(n+1)] A(x)^(n^2) = 0 for n>=0.
1, 1, 0, -1, -6, -78, -1544, -40605, -1328178, -51857806, -2350025232, -121120896906, -6991877399100, -446673990116508, -31277285155060464, -2381645560450404989, -195914136385421694954, -17312472044077536945630, -1635541992950202705979424, -164494265246550280147797438
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x - x^3 - 6*x^4 - 78*x^5 - 1544*x^6 - 40605*x^7 -... Coefficients of x^k in the square powers A(x)^(n^2) of g.f. A(x) begin: n=1: [1, 1, 0, -1, -6, -78, -1544, -40605, -1328178, ...]; n=2: [1, 4, 6, 0, -35, -396, -7182, -181824, -5817510, ...]; n=3: [1, 9, 36, 75, 0, -1260, -21408, -499203, -15299145, ...]; n=4: [1,16, 120, 544, 1484, 0, -52656, -1202240, -34269906, ...]; n=5: [1,25, 300, 2275, 11900, 40680, 0, -2557775, -73526475, ...]; n=6: [1,36, 630, 7104, 57429, 345204, 1430418, 0,-142432290, ...]; n=7: [1,49,1176,18375,209230,1833678,12546744, 61418175, 0, ...]; n=8: [1,64,2016,41600,630960,7470336,71271616,549420288,3113335320, 0, ...]; ... where the coefficients of x^(n+1) in A(x)^(n^2) all equal zero for n>=0. Related expansions. A(x) = G(x*A(x)^2) where G(x) = A(x/G(x)^2) is the g.f. of A185072: G(x) = 1 + x - 2*x^2 + 6*x^3 - 28*x^4 + 70*x^5 - 1446*x^6 -... A(x)'/A(x) = 1 - x - 2*x^2 - 21*x^3 - 364*x^4 - 8830*x^5 - 273972*x^6 - 10313037*x^7 - 455135384*x^8 - 22995056286*x^9 - 1307053358940*x^10 - ... A(x)/A(x)' = 1 + x + 3*x^2 + 26*x^3 + 417*x^4 + 9726*x^5 + 295000*x^6 + 10946172*x^7 + 478392123*x^8 + ... + A305144(n)*x^n + ...
Programs
-
PARI
{a(n)=local(A=[1,1]);for(k=1,n,A=concat(A,0);A[#A]=-polcoeff((Ser(A) +O(x^(k+2)))^(k^2)/(k^2),k+1));A[n+1]} for(n=0,30,print1(a(n),", "))
Formula
a(n) is odd iff n+1 is a power of 2 (conjecture).
G.f. A(x) satisfies the following relationes.
(1) [x^(n+1)] A(x)^(n^2) = 0 for n>=0.
(2) A(x) = G(x*A(x)^2) where G(x) = A(x/G(x)^2) is the g.f. of A185072.
(3) A(x)/A(x)' is the g.f. of A305144. - Paul D. Hanna, Oct 23 2020