cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A033165 First occurrence of n as a term in the continued fraction for zeta(3).

Original entry on oeis.org

1, 12, 25, 2, 64, 27, 17, 140, 10, 119, 21, 239, 175, 78, 181, 46, 200, 4, 83, 619, 753, 412, 177, 197, 414, 138, 146, 561, 233, 29, 2276, 1549, 660, 889, 298, 1040, 2279, 322, 1274, 1882, 345, 2926, 673, 254, 1961, 1542, 1681, 296, 5423, 2423, 2557, 228
Offset: 1

Views

Author

Keywords

Comments

Incorrectly indexed version of A229057.

Crossrefs

Programs

  • Mathematica
    With[{cfz3 = ContinuedFraction[Zeta[3], 6000]}, Flatten[Table[Position[cfz3, n, 1, 1], {n, 60}]]] (* Harvey P. Dale, Nov 11 2012 *)
  • PARI
    /* 1500 precision digits */ v=contfrac(zeta(3)); a(n)=if(n<0,0,s=1; while(abs(n-component(v,s))>0,s++); s)

Formula

a(n) = 1 + A229057(n).

Extensions

More terms from Randall L Rathbun, Feb 03 2002

A249303 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 0, 1, -1, 2, -1, 1, 1, 0, -2, 3, 1, -4, 3, 1, 1, -2, -2, 4, 0, 3, -9, 6, 1, -1, 6, -9, 0, 5, -1, 3, 3, -15, 10, 1, 0, -4, 18, -24, 5, 6, 1, -8, 18, -6, -20, 15, 1, 1, -4, -4, 36, -49, 14, 7, 0, 5, -30, 60, -35, -21, 21, 1, -1, 10, -30, 20, 50, -84, 28, 8
Offset: 0

Views

Author

Clark Kimberling, Oct 24 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = 1 + (x - 1)/f(n-1,x), where f(0,x) = 1.
Every row sum is 1. The first column is purely periodic with period (1,0,-1,-1,0,1).
Conjecture: for n > 2, p(n,x) is irreducible if and only if n is a (prime - 2). More generally, if c is arbitrary and f(n,x) = 1 + (x + c)/f(n-1,x), where f(x,0) = 1, then p(n,x) is irreducible if and only if n is a (prime - 2).

Examples

			f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = x/1, so that p(1,x) = x;
f(2,x) = (-1 + 2 x)/x, so that p(2,x) = -1 + 2 x.
First 6 rows of the triangle of coefficients:
... 1
... 0 ... 1
.. -1 ... 2
.. -1 ... 1 ... 1
... 0 .. -2 ... 3
... 1 .. -4 ... 3 ... 1
		

Crossrefs

Programs

  • Mathematica
    z = 20; f[n_, x_] := 1 + (x - 1)/f[n - 1, x]; f[0, x_] = 1;
    t = Table[Factor[f[n, x]], {n, 0, z}]
    u = Numerator[t]
    TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]] (* A249303 array *)
    v = Flatten[CoefficientList[u, x]] (* A249303 *)
Showing 1-2 of 2 results.