cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229892 Number T(n,k) of k up, k down permutations of [n]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 5, 3, 1, 1, 0, 16, 6, 4, 1, 1, 0, 61, 26, 10, 5, 1, 1, 0, 272, 71, 20, 15, 6, 1, 1, 0, 1385, 413, 125, 35, 21, 7, 1, 1, 0, 7936, 1456, 461, 70, 56, 28, 8, 1, 1, 0, 50521, 10576, 1301, 574, 126, 84, 36, 9, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2013

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = T(n,n) = A000012(n) = 1 for k>n.
T(2*n,n) = C(2*n-1,n) = A088218(n) = A001700(n-1) for n>0.
T(2*n+1,n) = C(2*n,n) = A000984(n).
T(2*n+1,n+1) = C(2n,n-1) = A001791(n) for n>0.

Examples

			Triangle T(n,k) begins:
  1;
  1,    1;
  0,    1,   1;
  0,    2,   1,   1;
  0,    5,   3,   1,  1;
  0,   16,   6,   4,  1,  1;
  0,   61,  26,  10,  5,  1, 1;
  0,  272,  71,  20, 15,  6, 1, 1;
  0, 1385, 413, 125, 35, 21, 7, 1, 1;
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1, add(`if`(t=k,
           b(o-j, u+j-1, 1, k), b(u+j-1, o-j, t+1, k)), j=1..o))
        end:
    T:= (n, k)-> `if`(k+1>=n, 1, `if`(k=0, 0, b(0, n, 0, k))):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[u_, o_, t_, k_] := b[u, o, t, k] = If[u+o == 0, 1, Sum[If[t == k, b[o-j, u+j-1, 1, k], b[u+j-1, o-j, t+1, k]], {j, 1, o}]]; t[n_, k_] := If[k+1 >= n, 1, If[k == 0, 0, b[0, n, 0, k]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

Formula

T(7,3) = 20: 1237654, 1247653, 1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532, 1567432, 2347651, 2357641, 2367541, 2457631, 2467531, 2567431, 3457621, 3467521, 3567421, 4567321.

A229551 Number of 1 up, 1 down, 2 up, 2 down, ... permutations of [n].

Original entry on oeis.org

1, 1, 1, 2, 5, 9, 40, 111, 643, 2261, 6176, 53560, 265001, 976535, 10699235, 65839306, 297528021, 1096638993, 16254932942, 131192702293, 760059358527, 3527632148650, 63700463354263, 620906514026512, 4309068955961383, 23776534616426566, 110660256825406666
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2013

Keywords

Examples

			a(2) = 1: 12.
a(3) = 2: 132, 231.
a(4) = 5: 1324, 1423, 2314, 2413, 3412.
a(5) = 9: 13245, 14235, 15234, 23145, 24135, 25134, 34125, 35124, 45123.
a(6) = 40: 132465, 132564, ..., 561342, 562341.
a(7) = 111: 1324765, 1325764, ..., 6724531, 6734521.
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1, `if`(t>0,
           add(b(u+j-1, o-j, `if`(t=k, [-1, k], [t+1, k])[]), j=1..o),
           add(b(u-j, o+j-1, `if`(t=-k, [1, k+1], [t-1, k])[]), j=1..u)))
        end:
    a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1, 1), j=1..n)):
    seq(a(n), n=0..35);
  • Mathematica
    b[u_, o_, t_, k_] := b[u, o, t, k] = If[u + o == 0, 1, If[t > 0, Sum[b[u + j - 1, o - j, If[t == k, -1, t + 1], k], {j, 1, o}], Sum[b[u - j, o + j - 1, If[t == -k, 1, t - 1], If[t == -k, k + 1, k]], {j, 1, u}]]];
    a[n_] := If[n == 0, 1, Sum[b[j - 1, n - j, 1, 1], {j, 1, n}]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 16 2018, after Alois P. Heinz *)

A227941 Number of 1 up, 3 down, 5 up, 7 down, ... permutations of [n].

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 19, 55, 125, 245, 434, 4060, 21186, 81212, 254813, 692678, 1688555, 3776432, 60101767, 511650887, 3089821383, 14824989723, 60057570858, 213302293918, 681247718668, 1992449334436, 5409214694961, 132273848506202, 1692162553490943
Offset: 0

Views

Author

Alois P. Heinz, Oct 03 2013

Keywords

Examples

			a(2) = 1: 12.
a(3) = 2: 132, 231.
a(4) = 3: 1432, 2431, 3421.
a(5) = 4: 15432, 25431, 35421, 45321.
a(6) = 19: 154326, 164325, 165324, 165423, 254316, 264315, 265314, 265413, 354216, 364215, 365214, 365412, 453216, 463215, 465213, 465312, 563214, 564213, 564312.
a(7) = 55: 1543267, 1643257, ..., 6753124, 6754123.
a(8) = 125: 15432678, 16432578, ..., 78641235, 78651234.
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1, add(`if`(t=2*k-1,
           b(o-j, u+j-1, 1, k+1), b(u+j-1, o-j, t+1, k)), j=1..o))
        end:
    a:= n-> b(0, n, 0, 1):
    seq(a(n), n=0..35);
  • Mathematica
    b[u_, o_, t_, k_] := b[u, o, t, k] = If[u+o == 0, 1, Sum[If[t == 2*k-1, b[o-j, u+j-1, 1, k+1], b[u+j-1, o-j, t+1, k]], {j, 1, o}]];
    a[n_] := b[0, n, 0, 1];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Sep 01 2022, after Alois P. Heinz *)
Showing 1-3 of 3 results.