cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229095 Numbers k such that Sum_{i=1..k} i^tau(i) == 0 (mod k), where tau(i) = A000005(i), the number of divisors of i.

Original entry on oeis.org

1, 8, 9, 67, 72, 467, 801, 1071, 5141, 7193, 25688, 68488, 97768, 111816, 381061, 7829505, 17079937, 25615576, 44582211, 91110856, 639359784, 3492789629
Offset: 1

Views

Author

Paolo P. Lava, Sep 13 2013

Keywords

Examples

			1^tau(1) + 2^tau(2) + ... + 8^tau(8) + 9^tau(9) = 1^1 + 2^2 + 3^2 + 4^3 + 5^2 + 6^4 + 7^2 + 8^4 + 9^3 = 6273 and 6273 / 9 = 697.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n, t; t:=0;
    for n from 1 to q do t:=t+n^tau(n); if t mod n=0 then print(n);
    fi; od; end: P(10^6);
  • PARI
    list(lim) = {my(s = 0, f); for(k = 1, lim, s += k^numdiv(k); if(!(s % k), print1(k, ", ")));} \\ Amiram Eldar, Dec 29 2024

Extensions

a(16)-a(18) from Jinyuan Wang, Feb 18 2021
a(19)-a(22) from Amiram Eldar, Dec 29 2024