cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229108 Increasing a(n)is the smallest number of the form p^a*q^b, where a,b are positive integers and p < q are odd primes such that max( p^a, q^b)/min( p^a, q^b) <= 1 + 2/prime(n).

Original entry on oeis.org

15, 35, 63, 143, 323, 575, 675, 783, 899, 1763, 2303, 3599, 5183, 6399, 6723, 10403, 11663, 15875, 19043, 22499, 27221, 28223, 32399, 36863, 39203, 50621, 51983, 53357, 57599, 58563, 72899, 77837, 79523, 95477, 97343, 119021, 121103, 123197, 129599
Offset: 2

Views

Author

Keywords

Examples

			15 is the least number of considered form, and 5/3 = 1 + 2/prime(2). So a(2)=15; in case of n=23, not only 28223 but also 29237 satisfies required inequality and we choose the smallest from them.
		

Crossrefs

Cf. A037074.

Programs

  • Mathematica
    tmp={1}; Do[test=1+2/Prime[n]; AppendTo[tmp, NestWhile[#+2&, Last[tmp]+2, !((Max[#]/Min[#]&[Map[#[[1]]^#[[2]]&, FactorInteger[#]]] <= test) && (Length[FactorInteger[#]]==2))&]], {n,2,30}]; Rest[tmp]
  • PARI
    factorPP(n)=my(f=factor(n)); vecsort(vector(#f~,i,f[i,1]^f[i,2]))
    list(n)=my(v=primes(n),t=1,f);for(i=1,n,while(1, f=factorPP(t += 2); if(#f==2 && f[2]/f[1] <= 1+2/v[i], v[i]=t; break))); v \\ Charles R Greathouse IV, Sep 13 2013

Formula

If [prime(n), prime(n+1)] is a twin pair, then a(n) <= prime(n)*prime(n+1).