cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A229087 a(n) = sigma(n) mod n - antisigma(n) mod n, where sigma(n) = A000203(n) = sum of divisor of n, antisigma(n) = A024816(n) = sum of non-divisors of n.

Original entry on oeis.org

0, 1, -1, 0, -3, -3, -5, 2, -1, 1, -9, 2, -11, -1, 3, 6, -15, -3, -17, -6, 1, -5, -21, 12, -13, -7, -1, -14, -27, 9, -29, 14, -3, -11, -9, -16, -35, -13, -5, 0, -39, 3, -41, 14, 21, -17, -45, -16, -33, 11, -9, 14, -51, -3, -21, -12, -11, -23, -57, 6, -59, -25
Offset: 1

Views

Author

Jaroslav Krizek, Oct 24 2013

Keywords

Comments

Sequence contains anomalous increased frequency of values 14 (see A229115), a(n) = 14 for n = 32, 44, 52, 68, 76, 92, ... ).

Examples

			For n = 32; a(32 ) = sigma(32) mod 32 - antisigma(32) mod 32 = 63 mod 32 - 465 mod 32 = 31 - 17 = 14.
		

Crossrefs

Cf. A000203 (sigma(n)), A024816 (antisigma(n)).
Cf. A054024 (sigma(n) mod n), A229110(antisigma(n) mod n).
Cf. A229088 (numbers n such that sigma(n) mod n = antisigma(n) mod n).
Cf. A229089 (numbers n such that sigma(n) mod n < antisigma(n) mod n).
Cf. A229090 (numbers n such that sigma(n) mod n > antisigma(n) mod n).

Formula

a(n) = A000203(n) mod n - A024816(n) mod n = A054024(n) - A229110(n).
Showing 1-1 of 1 results.