cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229116 G.f.: A(x) = exp( Sum_{n>=1} A((-1)^n*x)^n * x^n/n ).

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 2, 9, 8, 38, 28, 154, 126, 676, 602, 3129, 2816, 14718, 13384, 70334, 65204, 342108, 321788, 1686698, 1602214, 8402492, 8051652, 42239764, 40797750, 214045640, 208136494, 1092138905, 1068176200, 5606018286, 5511336912, 28929594902, 28571895096, 150000016044
Offset: 0

Views

Author

Paul D. Hanna, Sep 14 2013

Keywords

Comments

Compare to a g.f. involving the Catalan function C(x) = 1 + x*C(x)^2 (A000108):
C(x) = exp( Sum_{n>=1} C(x)^n * x^n/n ).

Examples

			G.f.: A(x) = 1 + x + x^3 + 2*x^5 + 2*x^6 + 9*x^7 + 8*x^8 + 38*x^9 +...
where
log(A(x)) = A(-x)*x + A(x)^2*x^2/2 + A(-x)^3*x^3/3 + A(x)^4*x^4/4 + A(-x)^5*x^5/5 + A(x)^6*x^6/6 + A(-x)^7*x^7/7 +...
Also,
A(x)*(1 + x*A(x)) = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 18*x^7 + 30*x^8 + 76*x^9 + 124*x^10 + 308*x^11 + 514*x^12 +...
where 1/(A(x)*(1 + x*A(x))) = A(-x)*(1 - x*A(-x)).
		

Crossrefs

Cf. A157674.

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(k=1, n, subst(A, x, (-1)^k*x+x*O(x^n))^k*x^k/k))); polcoeff(A, n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=sqrt( (1 + x*subst(A,x,-x))/((1 - x*subst(A,x,-x))*(1 - x^2*A^2)) +x*O(x^n))); polcoeff(A, n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1 - x^2*A(-x)^2)/(1 - x^2*A(x)^2) ) / (1 - x*A(-x)).
(2) A(x) = 1/( (1 + x*A(x)) * A(-x) * (1 - x*A(-x)) ).
(3) 1 + x*A(x) = 2 / (1 + A(-x)^2*(1 - x^2*A(-x)^2)).
(4) A(x) = 1/(2*A(-x)*(1 - x*A(-x))) + A(-x)*(1 + x*A(-x))/2.
a(n) ~ c * d^n/(sqrt(Pi)*n^(3/2)), where d = sqrt((37 + (182701 - 19488*sqrt(87))^(1/3) + (182701 + 19488*sqrt(87))^(1/3))/21) = 2.37234975879070748... is the root of the equation -256 + 32*d^2 - 37*d^4 + 7*d^6 = 0. If n is even then c = sqrt((522 - 19*174^(2/3)/(92133 - 9877*sqrt(87))^(1/3) - (174*(92133 - 9877*sqrt(87)))^(1/3))/1479) = 0.3620905463490063953... is the root of the equation 182*c^2 - 522*c^4 + 493*c^6 = 16. If n is odd then c = sqrt(((58*(29 - 3*sqrt(87)))^(1/3) + (58*(29 + 3*sqrt(87)))^(1/3))/29) = 0.8049267655440167596... is the root of the equation 29*c^6 - 6*c^2 = 4. - Vaclav Kotesovec, Sep 15 2013