A229122 For odd m, let f(m) be the odd part of 3*m+1. a(n) is the least positive number of f-iterations of 2*n-1 to reach an odious number (A000069), or 0 if no such number of f-iterations exists.
1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 3, 2, 3, 3, 2, 2, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2
Offset: 1
Keywords
Examples
For n = 26, 2*n - 1 = 51; f(51) = 77 is evil; f(77) = 29 is evil; f(29) = 11 is odious, so a(26) = 3.
Programs
-
Mathematica
Table[m = 2 n - 1; NestWhile[# + 1 &, 1, !OddQ[DigitCount[m = # / 2^IntegerExponent[#, 2] & [3 m + 1], 2][[1]]] &], {n, 100}] (* Peter J. C. Moses, Oct 13 2013 *)
Extensions
More terms from Peter J. C. Moses
Comments