A229140 Smallest k such that k^2 + l^2 = n-th number expressible as sum of two squares (A001481).
0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 2, 0, 1, 2, 4, 3, 0, 1, 2, 4, 3, 0, 1, 4, 2, 3, 5, 0, 1, 2, 6, 3, 5, 4, 0, 1, 2, 5, 3, 4, 7, 0, 1, 2, 5, 3, 7, 4, 6, 0, 1, 2, 8, 3, 6, 4, 0, 1, 5, 2, 7, 3, 6, 4, 9, 8, 0, 1, 2, 3, 6, 9, 4, 7, 5, 0, 1, 2, 9, 3, 8, 4, 7, 5, 0
Offset: 1
Keywords
Examples
The 6th number expressible as sum of two squares A001481(6) = 8 = 2^2 + 2^2, so a(6)=2.
Programs
-
PARI
for(n=0, 300, s=sqrtint(n); forstep(i=s, 0, -1, if(issquare(n-i*i), print1(sqrtint(n-i*i), ", "); break))); \\ shift corrected by Michel Marcus, Jul 08 2025
Formula
a(n) = 0 if A001481(n) is square.
Comments