A229153 Numbers of the form c * m^2, where m > 0 and c is composite and squarefree.
6, 10, 14, 15, 21, 22, 24, 26, 30, 33, 34, 35, 38, 39, 40, 42, 46, 51, 54, 55, 56, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 102, 104, 105, 106, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 135, 136, 138, 140, 141, 142, 143, 145, 146, 150
Offset: 1
Keywords
Links
- Chris Boyd, Table of n, a(n) for n = 1..10000
Programs
-
PARI
iscomposite(n)={if(!isprime(n)&&n!=1,return(1));} test(n)={if(iscomposite(core(n)),return(1));} for(n=1,200,if(test(n)==1,print1(n",")))
-
PARI
lista(nn) = {for(n=1,nn, if(!ispseudoprime(core(n)) && !issquare(n), print1(n, ", ")));} \\ Altug Alkan, Feb 04 2016
-
PARI
list(lim)=my(v=List()); forsquarefree(c=6,lim\=1, if(#c[2]~ > 1, for(m=1,sqrtint(lim\c[1]), listput(v, c[1]*m^2)))); Set(v) \\ Charles R Greathouse IV, Jan 09 2022
-
Python
from math import isqrt from sympy import primepi, mobius def A229153(n): def f(x): c = n+x+(a:=isqrt(x)) for y in range(1,a+1): m = x//y**2 c += primepi(m)-sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1)) return c m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Jan 30 2025
Comments